skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Infrared sensors for environmental and biomedical applications
Monitoring water quality by detecting chemical and biological contaminants is critical to ensuring the provision and discharge of clean water, hence protecting human health and the ecosystem. Among the available analytical techniques, infrared (IR) spectroscopy provides sensitive and selective detection of multiple water contaminants. In this work, we present an application of IR spectroscopy for qualitative and quantitative assessment of chemical and biological water contaminants. We focus on in-line detection of nitrogen pollutants in the form of nitrate and ammonium for wastewater treatment process control and automation. We discuss the effects of water quality parameters such as salinity, pH, and temperature on the IR spectra of nitrogen pollutants. We then focus on application of the sensor for detection of contaminants of emerging concern, such as arsenic and Per- and polyfluoroalkyl substances (PFAS) in drinking water. We demonstrate the use of multivariate statistical analysis for automated data processing in complex fluids. Finally, we discuss application of IR spectroscopy for detecting biological water contaminants. We use the metabolomic signature of E. coli bacteria to determine its presence in water as well as distinguish between different strains of bacteria. Overall, this work shows that IR spectroscopy is a promising technique for monitoring both chemical and biological contaminants in water and has the potential for real-time, inline water quality monitoring.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
SPIE Photonics West
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km 2 of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions. 
    more » « less
  2. With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined. 
    more » « less
  3. Gannot, Israel ; Roodenko, Katy (Ed.)
    There is a growing demand for hand-held and/or field-grade sensors for biochemical analysis of fluids. These systems have applications in monitoring of nitrogen-based compounds (such as nitrate and ammonia) in the wastewater treatment industry; bacterial detection in drinking water; analysis of biofluids, such as urine or blood; and in many other areas. Mid-infrared (midIR) spectroscopy is a powerful tool for identification and quantification of a wide range of common organic and inorganic compounds. Although IR radiation is strongly absorbed in water, this technology can be adapted for analysis of fluids by utilizing the principles of attenuated total reflection (ATR). In this contribution we highlight the application of IR spectroscopy in wastewater analysis as well as for metabolomic analysis in bioreactors. We discuss the requirements for IR signal stability that are necessary for biochemical analysis of fluids and provide examples of challenges encountered during transition from FTIR to a QCL-based platform. Overall, our stepwise efforts target eventual integration of a QCL light source, waveguide sensor, and IR detector onto a single photonic integrated circuit (PIC) for applications in the defense sector as well as for a broad consumer market. 
    more » « less
  4. Abstract

    In recent years, concerns have been raised regarding the contamination of grapes with pesticide residues. As consumer demand for safer food products grows, regular monitoring of pesticide residues in food has become essential. This study sought to develop a rapid and sensitive technique for detecting two specific pesticides (phosmet and paraquat) present on the grape surface using the surface‐enhanced Raman spectroscopy (SERS) method. Gold nanostars (AuNS) particles were synthesized, featuring spiky tips that act as hot spots for localized surface plasmon resonance, thereby enhancing Raman signals. Additionally, the roughened surface of AuNS increases the surface area, resulting in improved interactions between the substrate and analyte molecules. Prominent Raman peaks of mixed contaminants were acquired and used to characterize and quantify the pesticides. It was observed that the SERS intensity of the Raman peaks changed in proportion to the concentration ratio of phosmet and paraquat. Moreover, AuNS exhibited superior SERS enhancement compared to gold nanoparticles. The results demonstrate that the lowest detectable concentration for both pesticides on grape surfaces is 0.5 mg/kg. These findings suggest that SERS coupled with AuNS constitutes a practical and promising approach for detecting and quantifying trace contaminants in food.

    Practical Application

    This research established a novel surface‐enhanced Raman spectroscopy (SERS) method coupled with a simplified extraction protocol and gold nanostar substrates to detect trace levels of pesticides in fresh produce. The detection limits meet the maximum residue limits set by the EPA. This substrate has great potential for rapid measurements of chemical contaminants in foods.

    more » « less
  5. As concerns rise about the health risks posed by per- and polyfluoroalkyl substances (PFAS) in the environment, there is a need to understand how these pollutants accumulate at environmental interfaces. Untangling the details of molecular adsorption, particularly when there are potential interactions with other molecules in environmental systems, can obscure the ability to focus on a particular contaminant with molecular specificity. Often adsorption studies of environmental interfaces require a reductionist approach, where laboratory experiments may not be fully tractable to environmental systems. In this work, we study polyfluorinated dodecylphosphonic acid (F21-DDPA) at the aqueous surfaces of distilled water (the most reduced “environmental” surface) and river water to explore the use of vibrational sum-frequency (VSF) spectroscopy as an experimental probe of fluorinated contaminants at natural environmental surfaces. We demonstrate how VSF spectroscopy offers advantages over nonspecific surface tension measurements when measuring PFAS adsorption isotherms at river water surfaces. VSF spectra of the C–F stretching region selectively probe the presence of F21-DDPA and can be used to extract meaningful structural insights and calculate surface concentrations, even at the complex river water surface. This study highlights the potential for VSF spectroscopy to be developed as a probe of fluorinated contaminants at natural environmental interfaces. 
    more » « less