skip to main content


Title: Towards infrared photonic integrated circuits (PICs) in biochemical analysis: implementation of quantum cascade lasers (QCLs) in analysis of fluids
There is a growing demand for hand-held and/or field-grade sensors for biochemical analysis of fluids. These systems have applications in monitoring of nitrogen-based compounds (such as nitrate and ammonia) in the wastewater treatment industry; bacterial detection in drinking water; analysis of biofluids, such as urine or blood; and in many other areas. Mid-infrared (midIR) spectroscopy is a powerful tool for identification and quantification of a wide range of common organic and inorganic compounds. Although IR radiation is strongly absorbed in water, this technology can be adapted for analysis of fluids by utilizing the principles of attenuated total reflection (ATR). In this contribution we highlight the application of IR spectroscopy in wastewater analysis as well as for metabolomic analysis in bioreactors. We discuss the requirements for IR signal stability that are necessary for biochemical analysis of fluids and provide examples of challenges encountered during transition from FTIR to a QCL-based platform. Overall, our stepwise efforts target eventual integration of a QCL light source, waveguide sensor, and IR detector onto a single photonic integrated circuit (PIC) for applications in the defense sector as well as for a broad consumer market.  more » « less
Award ID(s):
1951152
NSF-PAR ID:
10427350
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Gannot, Israel; Roodenko, Katy
Date Published:
Journal Name:
Proc. SPIE 11953, Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXII
Volume:
119530A
Page Range / eLocation ID:
31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Monitoring water quality by detecting chemical and biological contaminants is critical to ensuring the provision and discharge of clean water, hence protecting human health and the ecosystem. Among the available analytical techniques, infrared (IR) spectroscopy provides sensitive and selective detection of multiple water contaminants. In this work, we present an application of IR spectroscopy for qualitative and quantitative assessment of chemical and biological water contaminants. We focus on in-line detection of nitrogen pollutants in the form of nitrate and ammonium for wastewater treatment process control and automation. We discuss the effects of water quality parameters such as salinity, pH, and temperature on the IR spectra of nitrogen pollutants. We then focus on application of the sensor for detection of contaminants of emerging concern, such as arsenic and Per- and polyfluoroalkyl substances (PFAS) in drinking water. We demonstrate the use of multivariate statistical analysis for automated data processing in complex fluids. Finally, we discuss application of IR spectroscopy for detecting biological water contaminants. We use the metabolomic signature of E. coli bacteria to determine its presence in water as well as distinguish between different strains of bacteria. Overall, this work shows that IR spectroscopy is a promising technique for monitoring both chemical and biological contaminants in water and has the potential for real-time, inline water quality monitoring. 
    more » « less
  2. Abstract

    A terahertz (THz) frequency comb capable of high-resolution measurement will significantly advance THz technology application in spectroscopy, metrology and sensing. The recently developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great potentials with high power and broadband spectrum. Here, we report a room temperature THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR comb with an integrated mid-IR single mode based on distributed-feedback grating without using external optical elements. The grating Bragg wavelength is largely detuned from the gain peak to suppress the grating dispersion and support the comb operation in the high gain spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb will find applications to room temperature chip-based THz spectroscopy.

     
    more » « less
  3. Mid-infrared (mid-IR) absorption spectroscopy based on integrated photonic circuits has shown great promise in trace-gas sensing applications in which the mid-IR radiation directly interacts with the targeted analyte. In this paper, considering monolithic integrated circuits with quantum cascade lasers (QCLs) and quantum cascade detectors (QCDs), the InGaAs−InP platform is chosen to fabricate passive waveguide gas sensing devices. Fully suspended InGaAs waveguide devices with holey photonic crystal waveguides (HPCWs) and subwavelength grating cladding waveguides (SWWs) are designed and fabricated for mid-infrared sensing at λ = 6.15 μm in the low-index contrast InGaAs−InP platform. We experimentally detect 5 ppm ammonia with a 1 mm long suspended HPCW and separately with a 3 mm long suspended SWW, with propagation losses of 39.1 and 4.1 dB/cm, respectively. Furthermore, based on the Beer−Lambert infrared absorption law and the experimental results of discrete components, we estimated the minimum detectable gas concentration of 84 ppb from a QCL/QCD integrated SWW sensor. To the best of our knowledge, this is the first demonstration of suspended InGaAs membrane waveguides in the InGaAs−InP platform at such a long wavelength with gas sensing results. Also, this result emphasizes the advantage of SWWs to reduce the total transmission loss and the size of the fully integrated device’s footprint by virtue of its low propagation loss and TM mode compatibility in comparison to HPCWs. This study enables the possibility of monolithic integration of quantum cascade devices with TM polarized characteristics and passive waveguide sensing devices for on-chip mid-IR absorption spectroscopy. 
    more » « less
  4. This paper presents a data-processing technique that improves the accuracy and precision of absorption-spectroscopy measurements by isolating the molecular absorbance signal from errors in the baseline light intensity (Io) using cepstral analysis. Recently, cepstral analysis has been used with traditional absorption spectrometers to create a modified form of the time-domain molecular free-induction decay (m-FID) signal, which can be analyzed independently fromIo. However, independent analysis of the molecular signature is not possible when the baseline intensity and molecular response do not separate well in the time domain, which is typical when using injection-current-tuned lasers [e.g., tunable diode and quantum cascade lasers (QCLs)] and other light sources with pronounced intensity tuning. In contrast, the method presented here is applicable to virtually all light sources since it determines gas properties by least-squares fitting a simulated m-FID signal (comprising an estimatedIoand simulated absorbance spectrum) to the measured m-FID signal in the time domain. This method is insensitive to errors in the estimatedIo, which vary slowly with optical frequency and, therefore, decay rapidly in the time domain. The benefits provided by this method are demonstrated via scanned-wavelength direct-absorption-spectroscopy measurements acquired with a distributed-feedback (DFB) QCL. The wavelength of a DFB QCL was scanned across the CO P(0,20) and P(1,14) absorption transitions at 1 kHz to measure the gas temperature and concentration of CO. Measurements were acquired in a gas cell and in a laminar ethylene–air diffusion flame at 1 atm. The measured spectra were processed using the new m-FID-based method and two traditional methods, which rely on inferring (instead of rejecting) the baseline error within the spectral-fitting routine. The m-FID-based method demonstrated superior accuracy in all cases and a measurement precision that was≈<#comment/>1.5to 10 times smaller than that provided using traditional methods.

     
    more » « less
  5. Tetrazoles are well known for their high positive enthalpy of formation which makes them attractive as propellants, explosives, and energetic materials. As a step towards a deeper understanding of the stability of benziodazolotetrazole (BIAT)-based materials compared to their benziodoxole (BIO) counterparts, we investigated in this work electronic structure features and bonding properties of two monovalent iodine precursors: 2-iodobenzoic acid and 5-(2-iodophenyl)tetrazole and eight hypervalent iodine (III) compounds: I-hydroxybenzidoxolone, I-methoxybenziodoxolone, I-ethoxybenziodoxolone, I-iso-propoxybenziodoxolone and the corresponding I-hydroxyben ziodazolotetrazole, I-methoxybenziodazolotetrazole, I-ethoxybenziodazolotetrazole and I-iso- propoxybenziodazolotetrazole. As an efficient tool for the interpretation of the experimental IR spectra and for the quantitative assessment of the I−C, I−N, and I−O bond strengths in these compounds reflecting substituent effects, we used the local vibrational mode analysis, originally introduced by Konkoli and Cremer, complemented by electron density and natural bond orbital analyses. Based on the hypothesis that stronger bonds correlate with increased stability, we predict that, for both series, i.e., substituted benziodoxoles and benziodazolotetrazoles, the stability increases as follows: I-iso-propoxy < I-ethoxy < I-methoxy < I-hydroxy. In particular, the I−N bonds in the benziodazolotetrazoles could be identified as the so-called trigger bonds being responsible for the initiation of explosive decomposition in benziodazolotetrazoles. The new insight gained by this work will allow for the design of new benziodazolotetrazole materials with controlled performance or stability based on the modulation of the iodine bonds with its three ligands. The local mode analysis can serve as an effective tool to monitor the bond strengths, in particular to identify potential trigger bonds. We hope that this article will foster future collaboration between the experimental and computational community being engaged in vibrational spectroscopy. 
    more » « less