skip to main content


Search for: All records

Award ID contains: 1951152

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gannot, Israel ; Roodenko, Katy (Ed.)
    There is a growing demand for hand-held and/or field-grade sensors for biochemical analysis of fluids. These systems have applications in monitoring of nitrogen-based compounds (such as nitrate and ammonia) in the wastewater treatment industry; bacterial detection in drinking water; analysis of biofluids, such as urine or blood; and in many other areas. Mid-infrared (midIR) spectroscopy is a powerful tool for identification and quantification of a wide range of common organic and inorganic compounds. Although IR radiation is strongly absorbed in water, this technology can be adapted for analysis of fluids by utilizing the principles of attenuated total reflection (ATR). In this contribution we highlight the application of IR spectroscopy in wastewater analysis as well as for metabolomic analysis in bioreactors. We discuss the requirements for IR signal stability that are necessary for biochemical analysis of fluids and provide examples of challenges encountered during transition from FTIR to a QCL-based platform. Overall, our stepwise efforts target eventual integration of a QCL light source, waveguide sensor, and IR detector onto a single photonic integrated circuit (PIC) for applications in the defense sector as well as for a broad consumer market. 
    more » « less
  2. null (Ed.)
    Monitoring water quality by detecting chemical and biological contaminants is critical to ensuring the provision and discharge of clean water, hence protecting human health and the ecosystem. Among the available analytical techniques, infrared (IR) spectroscopy provides sensitive and selective detection of multiple water contaminants. In this work, we present an application of IR spectroscopy for qualitative and quantitative assessment of chemical and biological water contaminants. We focus on in-line detection of nitrogen pollutants in the form of nitrate and ammonium for wastewater treatment process control and automation. We discuss the effects of water quality parameters such as salinity, pH, and temperature on the IR spectra of nitrogen pollutants. We then focus on application of the sensor for detection of contaminants of emerging concern, such as arsenic and Per- and polyfluoroalkyl substances (PFAS) in drinking water. We demonstrate the use of multivariate statistical analysis for automated data processing in complex fluids. Finally, we discuss application of IR spectroscopy for detecting biological water contaminants. We use the metabolomic signature of E. coli bacteria to determine its presence in water as well as distinguish between different strains of bacteria. Overall, this work shows that IR spectroscopy is a promising technique for monitoring both chemical and biological contaminants in water and has the potential for real-time, inline water quality monitoring. 
    more » « less