Developing fast‐charging, high‐temperature, and sustainable batteries is critical for the large‐scale deployment of energy storage devices in electric vehicles, grid‐scale electrical energy storage, and high temperature regions. Here, a transition metal‐free all‐organic rechargeable potassium battery (RPB) based on abundant and sustainable organic electrode materials (OEMs) and potassium resources for fast‐charging and high‐temperature applications is demonstrated. N‐doped graphene and a 2.8
- Award ID(s):
- 2002634
- PAR ID:
- 10231013
- Date Published:
- Journal Name:
- Nature Materials
- ISSN:
- 1476-1122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract m potassium hexafluorophosphate (KPF6) in diethylene glycol dimethyl ether (DEGDME) electrolyte are employed to mitigate the dissolution of OEMs, enhance the electrode conductivity, accommodate large volume change, and form stable solid electrolyte interphase in the all‐organic RPB. At room temperature, the RPB delivers a high specific capacity of 188.1 mAh g−1at 50 mA g−1and superior cycle life of 6000 and 50000 cycles at 1 and 5 A g−1, respectively, demonstrating an ultra‐stable and fast‐charging all‐organic battery. The impressive performance at room temperature is extended to high temperatures, where the high‐mass‐loading (6.5 mg cm−2) all‐organic RPB exhibits high‐rate capability up to 2 A g−1and a long lifetime of 500 cycles at 70–100 °C, demonstrating a superb fast‐charging and high‐temperature battery. The cell configuration demonstrated in this work shows great promise for practical applications of sustainable batteries at extreme conditions. -
Abstract The energy and power performance of lithium (Li)‐ion batteries is significantly reduced at low‐temperature conditions, which is mainly due to the slow diffusion of Li‐ions in graphite anode. Here, it is demonstrated that the effective utilization of the surface‐controlled charge storage mechanism through the transition from layered graphite to 3D crumpled graphene (CG) dramatically improves the Li‐ion charge storage kinetics and structural stability at low‐temperature conditions. The structure‐controlled CG anode prepared via a one‐step aerosol drying process shows a remarkable rate‐capability by delivering ≈206 mAh g–1at a high current density of 10 A g–1at room temperature. At an extremely low temperature of −40 °C, CG anode still exhibits a high capacity of ≈154 mAh g–1at 0.01 A g–1with excellent rate‐capability and cycling stability. A combination of electrochemical studies and density functional theory (DFT) reveals that the superior performance of CG anode stems from the dominant surface‐controlled charge storage mechanism at various defect sites. This study establishes the effective utilization of the surface‐controlled charge storage mechanism through structure‐controlled graphene as a promising strategy to improve the charge storage kinetics and stability under low‐temperature conditions.
-
Abstract Compact, light, and powerful energy storage devices are urgently needed for many emerging applications; however, the development of advanced power sources relies heavily on advances in materials innovation. Here, the findings in rational design, one‐pot synthesis, and characterization of a series of Ni hydroxide‐based electrode materials in alkaline media for fast energy storage are reported. Under the guidance of density functional theory calculations and experimental investigations, a composite electrode composed of Co‐/Mn‐substituted Ni hydroxides grown on reduced graphene oxide (rGO) is designed and prepared, demonstrating capacities of 665 and 427 C g−1at current densities of 2 and 20 A g−1, respectively. The superior performance is attributed mainly to the low deprotonation energy and the facile electron transport, as elaborated by theoretical calculations. When coupled with an electrode based on organic molecular‐modified rGO, the resulting hybrid device demonstrates an energy density of 74.7 W h kg−1at a power density of 1.68 kW kg−1while maintaining capacity retention of 91% after 10,000 cycles (20 A g−1). The findings not only provide a promising electrode material for high‐performance hybrid capacitors but also open a new avenue toward knowledge‐based design of efficient electrode materials for other energy storage applications.
-
Abstract Organic materials with redox‐active oxygen functional groups are of great interest as electrode materials for alkali‐ion storage due to their earth‐abundant constituents, structural tunability, and enhanced energy storage properties. Herein, a hybrid carbon framework consisting of reduced graphene oxide and oxygen functionalized carbon quantum dots (CQDs) is developed via the one‐pot solvothermal reduction method, and a systematic study is undertaken to investigate its redox mechanism and electrochemical properties with Li‐, Na‐, and K‐ions. Due to the incorporation of CQDs, the hybrid cathode delivers consistent improvements in charge storage performance for the alkali‐ions and impressive reversible capacity (257 mAh g−1at 50 mA g−1), rate capability (111 mAh g−1at 1 A g−1), and cycling stability (79% retention after 10 000 cycles) with Li‐ion. Furthermore, density functional theory calculations uncover the CQD structure‐electrochemical reactivity trends for different alkali‐ion. The results provide important insights into adopting CQD species for optimal alkali‐ion storage.
-
Abstract The significant performance decay in conventional graphite anodes under low‐temperature conditions is attributed to the slow diffusion of alkali metal ions, requiring new strategies to enhance the charge storage kinetics at low temperatures. Here, nitrogen (N)‐doped defective crumpled graphene (NCG) is employed as a promising anode to enable stable low‐temperature operation of alkali metal‐ion storage by exploiting the surface‐controlled charge storage mechanisms. At a low temperature of −40 °C, the NCG anodes maintain high capacities of ≈172 mAh g−1for lithium (Li)‐ion, ≈107 mAh g−1for sodium (Na)‐ion, and ≈118 mAh g−1for potassium (K)‐ion at 0.01 A g−1with outstanding rate‐capability and cycling stability. A combination of density functional theory (DFT) and electrochemical analysis further reveals the role of the N‐functional groups and defect sites in improving the utilization of the surface‐controlled charge storage mechanisms. In addition, the full cell with the NCG anode and a LiFePO4cathode shows a high capacity of ≈73 mAh g−1at 0.5 °C even at −40 °C. The results highlight the importance of utilizing the surface‐controlled charge storage mechanisms with controlled defect structures and functional groups on the carbon surface to improve the charge storage performance of alkali metal‐ion under low‐temperature conditions.