skip to main content


Title: Expedition 361 Scientific Prospectus: South African Climates (Agulhas LGM Density Profile)
The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean models and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as a control mechanism on the basin-wide AMOC, with implications for convective activity in the North Atlantic and Northern Hemisphere climate. International Ocean Discovery Program (IODP) Expedition 361 aims to extend this work to periods of major ocean and climate restructuring during the Pliocene/Pleistocene to assess the role that the Agulhas Current and ensuing (interocean) marine heat and salt transports have played in shaping the regional- and global-scale ocean and climate development. This expedition will core six sites on the southeast African margin and Indian–Atlantic ocean gateway. The primary sites are located between 416 and 3040 m water depths. The specific scientific objectives are • To assess the sensitivity of the Agulhas Current to changing climates of the Pliocene/Pleistocene, in association with transient to long-term changes of high-latitude climates, tropical heat budgets, and the monsoon system; • To reconstruct the dynamics of the Indian–Atlantic gateway circulation during such climate changes, in association with changing wind fields and migrating ocean fronts; • To examine the connection between Agulhas leakage and ensuing buoyancy transfer and shifts of the AMOC during major ocean and climate reorganizations during at least the last 5 My; and • To address the impact of Agulhas variability on southern Africa terrestrial climates and, notably, rainfall patterns and river runoff. Additionally, Expedition 361 will complete an intensive interstitial fluids program at four of the sites aimed at constraining the temperature, salinity, and density structure of the Last Glacial Maximum (LGM) deep ocean, from the bottom of the ocean to the base of the main thermocline, to address the processes that could fill the LGM ocean and control its circulation. Expedition 361 will seek to recover ~5200 m of sediment in total. The coring strategy will include the triple advanced piston corer system along with the extended core barrel coring system where required to reach target depths. Given the significant transit time required during the expedition (15.5 days), the coring schedule is tight and will require detailed operational planning and flexibility from the scientific party. The final operations plan, including the number of sites to be cored and/or logged, is contingent upon the R/V JOIDES Resolution operations schedule, operational risks, and the outcome of requests for territorial permission to occupy particular sites. All relevant IODP sampling and data policies will be adhered to during the expedition. Beyond the interstitial fluids program, shipboard sampling will be restricted to acquiring ephemeral data and to limited low-resolution sampling of parameters that may be critically affected by short-term core storage. Most sampling will be deferred to a postcruise sampling party that will take place at the Gulf Coast Repository in College Station, Texas (USA). A substantial onshore X-ray fluorescence scanning plan is anticipated and will be further developed in consultation with scientific participants.  more » « less
Award ID(s):
1326927
NSF-PAR ID:
10231033
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific prospectus
Volume:
361
ISSN:
2332-1385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 my. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as control mechanisms on the basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the sensitivity of the Agulhas Current to climatic changes during the Pliocene–Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of the Ancillary Project Letter, consisting of high-resolution interstitial water samples that will constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that span from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal. 
    more » « less
  2. International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin (southwest Indian Ocean) and in the Indian-Atlantic Ocean gateway, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 My. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that may influence basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the role of the Agulhas Current in climatic changes during the Pliocene–Pleistocene, specifically to document the dynamics of the Indian-Atlantic Ocean gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of Ancillary Project Letter number 845, consisting of high-resolution interstitial water sampling to help constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that range from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal. 
    more » « less
  3. Marine gateways play a critical role in the exchange of water, heat, salt, and nutrients between oceans and seas. The advection of dense waters helps drive global thermohaline circulation, and because the ocean is the largest of the rapidly exchanging CO2 reservoirs, this advection also affects atmospheric carbon concentration. Changes in gateway geometry can therefore significantly alter both the pattern of global ocean circulation and associated heat transport and climate, as well as having a profound local impact. Today, the volume of dense water supplied by Atlantic–Mediterranean exchange through the Gibraltar Strait is amongst the largest in the global ocean. For the past 5 My, this overflow has generated a saline plume at intermediate depths in the Atlantic that deposits distinctive contouritic sediments in the Gulf of Cadiz and contributes to the formation of North Atlantic Deep Water. This single gateway configuration only developed in the early Pliocene, however. During the Miocene, a wide, open seaway linking the Mediterranean and Atlantic evolved into two narrow corridors: one in northern Morocco, the other in southern Spain. Formation of these corridors permitted Mediterranean salinity to rise and a new, distinct, dense water mass to form and overspill into the Atlantic for the first time. Further restriction and closure of these connections resulted in extreme salinity fluctuations in the Mediterranean, leading to the formation of the Messinian Salinity Crisis salt giant. Investigating Miocene Mediterranean–Atlantic Gateway Exchange (IMMAGE) is an amphibious drilling proposal designed to recover a complete record of Atlantic–Mediterranean exchange from its Late Miocene inception to its current configuration. This will be achieved by targeting Miocene offshore sediments on either side of the Gibraltar Strait during International Ocean Discovery Program (IODP) Expedition 401 and recovering Miocene core from the two precursor connections now exposed on land with future International Continental Scientific Drilling Program (ICDP) campaigns. The scientific aims of IMMAGE are to constrain quantitatively the consequences for ocean circulation and global climate of the inception of Atlantic–Mediterranean exchange, to explore the mechanisms for high-amplitude environmental change in marginal marine systems, and to test physical oceanographic hypotheses for extreme high-density overflow dynamics that do not exist in the world today on this scale. 
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, investigated the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in insolation and atmospheric CO2 in the past and how ice sheet evolution influenced global sea level and vice versa. Five sites (U1534–U1538) were drilled east of the Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the southern Scotia Sea. We recovered continuously deposited late Neogene sediment to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. The sites from the southern Scotia Sea (Sites U1536–U1538) will be used to study the Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC). In particular, sediments from this area will allow us to assess the magnitude of iceberg flux during key times of AIS evolution, including the following: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm period, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition (MPT), and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss. We will also address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea between the Pirie Basin (Site U1538) and the Dove Basin (Sites U1536 and U1537), Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water mass production, ocean–atmosphere CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate dust-climate couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the MPT. The principal scientific objective of Subantarctic Front Sites U1534 and U1535 at the northern limit of the Scotia Sea is to reconstruct and understand how ocean circulation and intermediate water formation responds to changes in climate with a special focus on the connectivity between the Atlantic and Pacific basins, the “cold water route.” The Subantarctic Front contourite drift, deposited between 400 and 2000 m water depth on the northern flank of an east–west trending trough off the Chilean continental shelf, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front. During Expedition 382, we recovered continuously deposited sediments from this drift spanning the late Pleistocene (from ~0.78 Ma to recent) and from the late Pliocene (~3.1–2.6 Ma). These sites are expected to yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean, track migrations of the Subantarctic Front, and give insights into the role and evolution of the cold water route over significant climate episodes, including the following: • The most recent warm interglacials of the late Pleistocene and • The intensification of Northern Hemisphere glaciation. 
    more » « less
  5. null (Ed.)
    The long-term climate transition from the Cretaceous greenhouse to the late Paleogene icehouse provides an opportunity to study changes in Earth system dynamics associated with large changes in global temperature and atmospheric CO2 levels. Elevated CO2 levels during the mid-Cretaceous supergreenhouse interval (~95–80 Ma) resulted in low meridional temperature gradients, and oceanic deposition during this time was punctuated by widespread episodes of severe anoxia termed oceanic anoxic events, resulting in enhanced burial of organic carbon in conjunction with transient carbon isotope and temperature excursions. The prolonged interval of mid-Cretaceous warmth and subsequent Late Cretaceous–Paleogene climate trends, as well as intervening short-lived climate excursions, are poorly documented in the southern high latitudes. International Ocean Discovery Program (IODP) Expedition 392 aims to drill five sites in the southwest Indian Ocean on the Agulhas Plateau and in the Transkei Basin, positioned at paleolatitudes of 65°–58°S during the Late Cretaceous (100–66 Ma) and in the new and evolving gateway between the South Atlantic, Southern Ocean, and southern Indian Ocean basins. Recovery of basement rocks and expanded sedimentary sequences from the Agulhas Plateau and Transkei Basin will provide a wealth of new data to (i) determine the nature and origin of the Agulhas Plateau and (ii) significantly advance the understanding of how Cretaceous temperatures, ocean circulation, and sedimentation patterns evolved as CO2 levels rose and fell and the breakup of Gondwana progressed. Importantly, Expedition 392 drilling will test competing hypotheses concerning Agulhas Plateau large igneous province formation and the role of deep ocean circulation changes through southern gateways in controlling Late Cretaceous–Paleogene climate evolution. 
    more » « less