skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biomedically Relevant Applications of Bolaamphiphiles and Bolaamphiphile-Containing Materials
Bolaamphiphiles (BAs) are structurally segmented molecules with rich assembly characteristics and diverse physical properties. Interest in BAs as standalone active agents or as constituents of more complex therapeutic formulations has increased substantially in recent years. The preorganized amphiphilicity of BAs allows for a range of biological activities including applications that rely on multivalency. This review summarizes BA-related research in biomedically relevant areas. In particular, we review BA-related literature in four areas: gene delivery, antimicrobial materials, hydrogels, and prodrugs. We also discuss several distinguishing characteristics of BAs that impact their utility as biomedically relevant compounds.  more » « less
Award ID(s):
2002362
PAR ID:
10231044
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Chemistry
Volume:
8
ISSN:
2296-2646
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Predicting the embodied scope 3 carbon dioxide equivalent (CO2e) emissions from purchased electricity for end users in the United States is challenging due to electricity transmission within interconnected power grids. Existing methods only focus on large aggregation areas, thereby ignoring potentially significant emission factor (EF) variations, so this study proposes a novel method to translate the CO2e emissions from the balancing authority (BA)-level to the county-level by utilizing explicit finite-difference theory for electricity flow predictions, and then employing economic input–output theory to evaluate the scope 3 embodied lifecycle CO2e emissions. Results show that the generation-based EFs at the BA-level range from 0.007 to 0.905 MT-CO2e/MWh with a mean value of 0.400 MT-CO2e/MWh and a standard deviation of 0.229 MT-CO2e/MWh. The consumption-based EFs at the BA-level range from 0.008 to 0.836 MT-CO2e/MWh with a mean value of 0.378 MT-CO2e/MWh and a standard deviation of 0.019 MT-CO2e/MWh. Results also show that sixteen BA consumption-based EFs deviate by more than 20% compared to their generation-based EFs, which indicates the significance of accounting for electricity interchanges in emissions quantification processes. A larger range of possible consumption-based EFs is revealed at the county-level: 0.007 to 0.902 MT-CO2e/MWh, with a mean value of 0.452 MT-CO2e/MWh and a standard deviation of 0.123 MT-CO2e/MWh. Results also indicate significant variations in EFs of counties within each BA: 20 BAs have county-level EFs range greater than 0.1 MT-CO2e/MWh, 13 BAs have county-level EFs range greater than 0.2 MT-CO2e/MWh and 6 BAs have county-level EFs range beyond 0.3 MT-CO2e/MWh. 
    more » « less
  2. Abstract Mormyroidea is a superfamily of weakly electric African fishes with great potential as a model in a variety of biomedical research areas including systems neuroscience, muscle cell and craniofacial development, ion channel biophysics, and flagellar/ciliary biology. However, they are currently difficult to breed in the laboratory setting, which is essential for any tractable model organism. As such, there is a need to better understand the reproductive biology of mormyroids to breed them more reliably in the laboratory to effectively use them as a biomedical research model. This review seeks to (1) briefly highlight the biomedically relevant phenotypes of mormyroids and (2) compile information about mormyroid reproduction including sex differences, breeding season, sexual maturity, gonads, gametes, and courtship/spawning behaviors. We also highlight areas of mormyroid reproductive biology that are currently unexplored and/or have the potential for further investigation that may provide insights into more successful mormyroid laboratory breeding methods. 
    more » « less
  3. Abstract Maintaining safe and potent pharmaceutical drug levels is often challenging. Multidomain peptides (MDPs) assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery, yet their ability to extend release is typically limited by rapid drug diffusion. To overcome this challenge, we developed self-assembling boronate ester release (SABER) MDPs capable of engaging in dynamic covalent bonding with payloads containing boronic acids (BAs). As examples, we demonstrate that SABER hydrogels can prolong the release of five BA-containing small-molecule drugs as well as BA-modified insulin and antibodies. Pharmacokinetic studies revealed that SABER hydrogels extended the therapeutic effect of ganfeborole from days to weeks, preventingMycobacterium tuberculosisgrowth better than repeated oral administration in an infection model. Similarly, SABER hydrogels extended insulin activity, maintaining normoglycemia for six days in diabetic mice after a single injection. These results suggest that SABER hydrogels present broad potential for clinical translation. 
    more » « less
  4. Abstract Thermal management is the most critical technology challenge for modern electronics. Recent key materials innovation focuses on developing advanced thermal interface of electronic packaging for achieving efficient heat dissipation. Here, for the first time we report a record-high performance thermal interface beyond the current state of the art, based on self-assembled manufacturing of cubic boron arsenide (s-BAs). The s-BAs exhibits highly desirable characteristics of high thermal conductivity up to 21 W/m·K and excellent elastic compliance similar to that of soft biological tissues down to 100 kPa through the rational design of BAs microcrystals in polymer composite. In addition, the s-BAs demonstrates high flexibility and preserves the high conductivity over at least 500 bending cycles, opening up new application opportunities for flexible thermal cooling. Moreover, we demonstrated device integration with power LEDs and measured a superior cooling performance of s-BAs beyond the current state of the art, by up to 45 °C reduction in the hot spot temperature. Together, this study demonstrates scalable manufacturing of a new generation of energy-efficient and flexible thermal interface that holds great promise for advanced thermal management of future integrated circuits and emerging applications such as wearable electronics and soft robotics. 
    more » « less
  5. null (Ed.)
    ABSTRACT On and within most sites across an animal's body live complex communities of microorganisms. These microorganisms perform a variety of important functions for their hosts, including communicating with the brain, immune system and endocrine axes to mediate physiological processes and affect individual behaviour. Microbiome research has primarily focused on the functions of the microbiome within the gastrointestinal tract (gut microbiome) using biomedically relevant laboratory species (i.e. model organisms). These studies have identified important connections between the gut microbiome and host immune, neuroendocrine and nervous systems, as well as how these connections, in turn, influence host behaviour and health. Recently, the field has expanded beyond traditional model systems as it has become apparent that the microbiome can drive differences in behaviour and diet, play a fundamental role in host fitness and influence community-scale dynamics in wild populations. In this Review, we highlight the value of conducting hypothesis-driven research in non-model organisms and the benefits of a comparative approach that assesses patterns across different species or taxa. Using social behaviour as an intellectual framework, we review the bidirectional relationship between the gut microbiome and host behaviour, and identify understudied mechanisms by which these effects may be mediated. 
    more » « less