skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting embodied carbon emissions from purchased electricity for United States counties
Predicting the embodied scope 3 carbon dioxide equivalent (CO2e) emissions from purchased electricity for end users in the United States is challenging due to electricity transmission within interconnected power grids. Existing methods only focus on large aggregation areas, thereby ignoring potentially significant emission factor (EF) variations, so this study proposes a novel method to translate the CO2e emissions from the balancing authority (BA)-level to the county-level by utilizing explicit finite-difference theory for electricity flow predictions, and then employing economic input–output theory to evaluate the scope 3 embodied lifecycle CO2e emissions. Results show that the generation-based EFs at the BA-level range from 0.007 to 0.905 MT-CO2e/MWh with a mean value of 0.400 MT-CO2e/MWh and a standard deviation of 0.229 MT-CO2e/MWh. The consumption-based EFs at the BA-level range from 0.008 to 0.836 MT-CO2e/MWh with a mean value of 0.378 MT-CO2e/MWh and a standard deviation of 0.019 MT-CO2e/MWh. Results also show that sixteen BA consumption-based EFs deviate by more than 20% compared to their generation-based EFs, which indicates the significance of accounting for electricity interchanges in emissions quantification processes. A larger range of possible consumption-based EFs is revealed at the county-level: 0.007 to 0.902 MT-CO2e/MWh, with a mean value of 0.452 MT-CO2e/MWh and a standard deviation of 0.123 MT-CO2e/MWh. Results also indicate significant variations in EFs of counties within each BA: 20 BAs have county-level EFs range greater than 0.1 MT-CO2e/MWh, 13 BAs have county-level EFs range greater than 0.2 MT-CO2e/MWh and 6 BAs have county-level EFs range beyond 0.3 MT-CO2e/MWh.  more » « less
Award ID(s):
1738782
PAR ID:
10287004
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied energy
Volume:
292
ISSN:
0306-2619
Page Range / eLocation ID:
https://doi.org/10.1016/j.apenergy.2021.116898
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electricity generation in the United States entails significant water usage and greenhouse gas emissions. However, accurately estimating these impacts is complex due to the intricate nature of the electric grid and the dynamic electricity mix. Existing methods to estimate the environmental consequences of electricity use often generalize across large regions, neglecting spatial and temporal variations in water usage and emissions. Consequently, electric grid dynamics, such as temporal fluctuations in renewable energy resources, are often overlooked in efforts to mitigate environmental impacts. The U.S. Department of Energy (DOE) has initiated the development of resilient energyshed management systems, requiring detailed information on the local electricity mix and its environmental impacts. This study supports DOE's goal by incorporating geographic and temporal variations in the electricity mix of the local electric grid to better understand the environmental impacts of electricity end users. We offer hourly estimates of the U.S. electricity mix, detailing fuel types, water withdrawal intensity, and water consumption intensity for each grid balancing authority through our publicly accessible tool, the Water Integrated Mapping of Power and Carbon Tracker (Water IMPACT). While our primary focus is on evaluating water intensity factors, our dataset and programming scripts for historical and real‐time analysis also include evaluations of carbon dioxide (equivalence) intensity within the same modeling framework. This integrated approach offers a comprehensive understanding of the environmental footprint associated with electricity generation and use, enabling informed decision‐making to effectively reduce Scope 2 water usage and emissions. 
    more » « less
  2. Communities are considering local food production in response to the pressing need to reduce food system greenhouse gas (GHG) emissions. However, local food systems can vary considerably in design and operation, including controlled environment agriculture (CEA), which refers to agricultural production that takes place within an enclosed space where environmental conditions, such as temperature, humidity, and light, are precisely controlled. Such systems require a considerable amount of energy and thus emissions; therefore, this study seeks to quantify these environmental impacts to determine how local CEA systems compare to alternative systems. For this study’s methods, we apply life cycle assessment methodology to quantify the cradle-to-storeshelf GHG emissions and water consumption of four lettuce production systems: local indoor plant factory, local greenhouse, local seasonal soil, and conventional centralized production in California with transportation. Using geographically specific inputs, the study estimates the environmental impact of the different production systems including geospatially resolved growth modeling, emissions intensity, and transportation distances. The results include the major finding that baseline CEA systems always have higher GHG emissions (2.6–7.7 kg CO2e kg−1) than centralized production (0.3–1.0 kg CO2e kg−1), though water consumption is significantly less owing to hydroponic efficiency. In contrast, local seasonal soil production generally has a lower GHG impact than centralized production, though water consumption varies by crop yield and local precipitation during growing seasons. Scenario analyses indicate CEA facilities would need to electrify all systems and utilize low-carbon electricity sources to have equivalent or lower GHG impacts than California centralized production plus transportation. We conclude that these results can inform consumers and policy makers that local seasonal production and conventional supply chains are more sustainable than local CEA production in near-term food-energy-water sustainability nexus decision making. 
    more » « less
  3. Abstract Water consumption from electricity systems can be large, and it varies greatly by region. As electricity systems change, understanding the implications for water demand is important, given differential water availability. This letter presents regional water consumption and consumptive intensities for the United States electric grid by region using a 2014 base year, based on the 26 regions in the Environmental Protection Agency’s Emissions & Generation Resource Integrated Database. Estimates encompass operational (i.e. not embodied in fixed assets) water consumption from fuel extraction through conversion, calculated as the sum of induced water consumption for processes upstream of the point of generation (PoG) and water consumed at the PoG. Absolute water consumption and consumptive intensity is driven by thermal power plant cooling requirements. Regional consumption intensities vary by roughly a factor of 20. This variability is largely attributed to water consumption upstream of the PoG, particularly evaporation from reservoirs associated with hydroelectricity. Solar and wind generation, which are expected to continue to grow rapidly, consume very little water and could drive lower water consumption over time. As the electricity grid continues to change in response to policy, economic, and climatic drivers, understanding potential impacts on local water resources can inform changes. 
    more » « less
  4. Abstract Decarbonization is an urgent global policy priority, with increasing movement towards zero-carbon targets in the United States and elsewhere. Given the joint decarbonization strategies of electrifying fossil fuel-based energy uses and decarbonizing the electricity supply, understanding how electricity emissions might change over time is of particular value in evaluating policy sequencing strategies. For example, is the electricity system likely to decarbonize quickly enough to motivate electrification even on relatively carbon-intensive systems? Although electricity sector decarbonization has been widely studied, limited research has focused on evaluating emissions factors at the utility level, which is where the impact of electrification strategies is operationalized. Given the existing fleet of electricity generators, ownership structures, and generator lifespans, committed emissions can be modeled at the utility level. Generator lifespans are modeled using capacity-weighted mean age-on-retirement for similar units over the last two decades, a simple empirical outcome variable reflecting the length of time the unit might reasonably be expected to operate. By also evaluating generators in wholesale power markets and designing scenarios for new-build generation, first-order annual average emissions factors can be projected forward on a multidecadal time scale at the utility level. This letter presents a new model of utility-specific annual average emissions projections (greenhouse gases and air pollutants) through 2050 for the United States, using a 2019 base year to define existing asset characteristics. Enabling the creation and evaluation of scenario-based projections for dynamic environmental intensity metrics in a decarbonizing electricity sector can inform life cycle and other environmental assessment studies that evaluate impact over time, in addition to highlighting particular opportunities and risks associated with the timing and location of long-lived capital investments as the fossil fuel electricity generator fleet turns over. Model results can also be used to contextualize utilities’ decarbonization commitments and timelines against their asset bases. 
    more » « less
  5. null (Ed.)
    Bolaamphiphiles (BAs) are structurally segmented molecules with rich assembly characteristics and diverse physical properties. Interest in BAs as standalone active agents or as constituents of more complex therapeutic formulations has increased substantially in recent years. The preorganized amphiphilicity of BAs allows for a range of biological activities including applications that rely on multivalency. This review summarizes BA-related research in biomedically relevant areas. In particular, we review BA-related literature in four areas: gene delivery, antimicrobial materials, hydrogels, and prodrugs. We also discuss several distinguishing characteristics of BAs that impact their utility as biomedically relevant compounds. 
    more » « less