skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finding the strongest stable massless column with a follower load and relocatable concentrated masses
Summary We consider the problem of optimal placement of concentrated masses along a massless elastic column that is clamped at one end and loaded by a nonconservative follower force at the free end. The goal is to find the largest possible interval such that the variation in the loading parameter within this interval preserves stability of the structure. The stability constraint is nonconvex and nonsmooth, making the optimization problem quite challenging. We give a detailed analytical treatment for the case of two masses, arguing that the optimal parameter configuration approaches the flutter and divergence boundaries of the stability region simultaneously. Furthermore, we conjecture that this property holds for any number of masses, which in turn suggests a simple formula for the maximal load interval for $$n$$ masses. This conjecture is strongly supported by extensive computational results, obtained using the recently developed open-source software package granso (GRadient-based Algorithm for Non-Smooth Optimization) to maximize the load interval subject to an appropriate formulation of the nonsmooth stability constraint. We hope that our work will provide a foundation for new approaches to classical long-standing problems of stability optimization for nonconservative elastic systems arising in civil and mechanical engineering.  more » « less
Award ID(s):
2012250
PAR ID:
10231055
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Quarterly Journal of Mechanics and Applied Mathematics
ISSN:
0033-5614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A modified Legendre-Gauss-Radau collocation method is developed for solving optimal control problems whose solutions contain a nonsmooth optimal control. The method includes an additional variable that defines the location of nonsmoothness. In addition, collocation constraints are added at the end of a mesh interval that defines the location of nonsmoothness in the solution on each differential equation that is a function of control along with a control constraint at the endpoint of this same mesh interval. The transformed adjoint system for the modified Legendre-Gauss-Radau collocation method along with a relationship between the Lagrange multipliers of the nonlinear programming problem and a discrete approximation of the costate of the optimal control problem is then derived. Finally, it is shown via example that the new method provides an accurate approximation of the costate. 
    more » « less
  2. null (Ed.)
    A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre– Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh inter- val. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Fur- thermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth. 
    more » « less
  3. A new method is developed for solving optimal control problems whose solutions contain a nonsmooth optimal control. The method developed in this paper employs a modified form of the Legendre-Gauss-Radau (LGR) orthogonal direct collocation method in which an additional variable and two additional constraints are included at the end of a mesh interval. The additional variable is the switch time where a discontinuity occurs. The two additional constraints are a collocation condition on each differential equation that is a function of control along with a control constraint at the endpoint of the mesh interval that defines the location of the nonsmoothness. These additional constraints modify the search space of the NLP in a manner such that an accurate approximation to the location of the nonsmoothness is obtained. An example with a nonsmooth solution is used throughout the paper to illustrate the improvement of the method over the standard Legendre-Gauss-Radau collocation method. 
    more » « less
  4. Augmented Lagrangian (AL) methods have proven remarkably useful in solving optimization problems with complicated constraints. The last decade has seen the development of overall complexity guarantees for inexact AL variants. Yet, a crucial gap persists in addressing nonsmooth convex constraints. To this end, we present a smoothed augmented Lagrangian (AL) framework where nonsmooth terms are progressively smoothed with a smoothing parameter $$\eta_k$$. The resulting AL subproblems are $$\eta_k$$-smooth, allowing for leveraging accelerated schemes. By a careful selection of the inexactness level  (for inexact subproblem resolution), the penalty parameter $$\rho_k$$, and smoothing parameter $$\eta_k$$ at epoch k, we derive rate and complexity guarantees of  $$\tilde{\mathcal{O}}(1/\epsilon^{3/2})$$ and $$\tilde{\mathcal{O}}(1/\epsilon)$$  in convex and strongly convex regimes for computing an -optimal solution, when $$\rho_k$$ increases at a geometric rate, a significant improvement over the best available guarantees for AL schemes for convex programs with nonsmooth constraints. Analogous guarantees are developed for settings with $$\rho_k=\rho$$ as well as $$\eta_k=\eta$$. Preliminary numerics on a fused Lasso problem display promise. 
    more » « less
  5. null (Ed.)
    Stability and reliability are of the most important concern for isolated microgrid systems that have no support from the utility grid. Interval predictions are often applied to ensure the system stability of isolated microgrids as they cover more uncertainties and robust control can be achieved based on more sufficient information. In this paper, we propose a probabilistic microgrid energy exchange method based on the Model Predictive Control (MPC) approach to make better use of the prediction intervals so that the system stability and cost efficiency of isolated microgrids are improved simultaneously. Appropriate scenarios are selected from the predictions according to the evaluation of future trends and system capacity. In the meantime, a two-stage adaptive reserve strategy is adopted to further utilize the potential of interval predictions and maintain the system security adaptively. Reserves are determined at the optimization stage to prepare some extra capacity for the fluctuations in the renewable generation and load demand at the operation stage based on the aggressive and conservative level of the system, which is automatically updated at each step. The optimal dispatch problem is finally formulated using the mixed-integer linear programming model and the MPC is formulated as an optimization problem with a discount factor introduced to adjust the weights. Case studies show that the proposed method could effectively guarantee the stability of the system and improve economic performance. 
    more » « less