A wide variation in muscle strength and asymmetry
exists in people with movement disorders. Functional
electrical stimulation (FES) can be used to induce muscle
contractions to assist and a motor can be used to both assist
and resist a person’s volitional and/or FES-induced pedaling.
On a traditional cycle with coupled pedals, people with
neuromuscular asymmetries can primarily use their dominant
(i.e., stronger) side to successfully pedal at a desired cadence,
neglecting the side that would benefit most from rehabilitation.
In this paper, a multi-level switched system is applied to a two-sided
control objective to maintain a desired range of cadence
using FES, an electric motor, and volitional pedaling. The non-dominant
leg tracks the cadence range while the dominant
leg tracks the position (offset by 180 degrees) and cadence of
the first leg. Assistive, uncontrolled, and resistive modes are
developed based on cadence and position for the non-dominant
and dominant legs, respectively. Lyapunov-based methods for
switched systems are used to prove global exponential tracking
to the desired cadence range for the combined FES-motor
control system.
more »
« less
Teleoperated Motorized Functional Electric Stimulation Actuated Rehabilitative Cycling
Many people are affected by a wide range of neuromuscular disorders, many of which can be improved through the use of Functional Electrical Stimulation (FES) rehabilitative cycling. Recent improvements in nonlinear, Lyapunov-based FES muscle control with motor assistance in unstimulated regions of the cycle-crank rotation have led to a reduction in muscle fatigue, allowing rehabilitation time to be extended. Studies in rehabilitation have shown that the addition of coordinated movement between the upper limbs and lower limbs can have a positive effect on neural plasticity leading to faster restoration of walking in those who have some neurological disorders. In this paper, to implement coordinated motion during rehabilitation, a strongly coupled bilateral telerobotic system is developed between a hand-cycle system driven by the participant’s volitional efforts and a split-crank leg-cycle system driven by the switched application of FES with motor assistance. A variable operator is applied to the leg-cycle’s motor input during the FES stimulation regions to provide assistance as required. Lyapunov-based analysis methods are used on the combined leg and hand-cycle system to prove global exponential stability. Analysis further proves that all switched system inputs are bounded, thus the states of the telerobotic master (i.e., hand-cycle system) are bounded, therefore, the telerobotic system is stable.
more »
« less
- Award ID(s):
- 1762829
- NSF-PAR ID:
- 10231096
- Date Published:
- Journal Name:
- ASME Dynamic Systems and Control Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Functional electrical stimulation (FES) has proven to be an effective method for improving health and regaining muscle function for people with limited or reduced motor skills. Closed-loop control of motorized FES-cycling can facilitate recovery. Many people with movement disorders (e.g., stroke) have asymmetries in their motor control, motivating the need for a closed-loop control system that can be implemented on a split-crank cycle. In this paper, nonlinear sliding mode controllers are designed for the FES and electric motor on each side of a split-crank cycle to maintain a desired cadence and a crank angle offset of 180 degrees, simulating standard pedaling conditions. A Lyapunov-like function is used to prove stability and tracking of the desired cadence and position for the combined cycle-rider system. One experimental trial on an able-bodied individual demonstrated the feasibility and stability of the closed-loop controller, which resulted in an average cadence error of 2.62 ± 3.54 RPM for the dominant leg and an average position and cadence error of 39.84±10.77 degrees and −0.04 ± 8.79 RPM for the non-dominant leg.more » « less
-
A wide variation in muscle strength and range of motion exists in the movement disorder rehabilitation community. Functional Electrical Stimulation (FES) can be used to induce muscle contractions to assist a person who can contribute volitional coordinated torques. A motor can be used to both assist and resist a person's volitional and/or FES-induced pedaling. In this paper, a multi-level switched system is applied to a two-sided control objective to maintain a desired range of cadence using FES, motor assistance, motor resistance, and volitional pedaling. A system with assistive, passive, and resistive modes are developed based on cadence, each with a different combination of actuators. Lyapunov-based methods for switched systems are used to prove global exponential tracking to the desired cadence range for the combined FES-motor control system. Preliminary experiments show the feasibility and stability of the multi-level switched control system.more » « less
-
A common rehabilitation for those with lower limb movement disorders is motorized functional electrical stimulation (FES) induced cycling. Motorized FES-cycling is a switched system with uncertain dynamics, unknown disturbances, and there exists an unknown time-varying input delay between the application/removal of stimulation and the onset/removal of muscle force. This is further complicated by the fact that each participant has varying levels of sensitivity to the FES input, and the stimulation must be bounded to ensure comfort and safety. In this paper, saturated FES and motor controllers are developed for an FES-cycle that ensure safety and comfort of the participant, while likewise being robust to uncertain parameters in the dynamics, unknown disturbances, and an unknown time-varying input delay. A Lyapunov-based stability analysis is performed to ensure uniformly ultimately bounded cadence tracking.more » « less
-
null (Ed.)Rehabilitation robotics is an emerging tool for motor recovery from various neurological impairments. However, balancing the human and robot contribution is an open problem. While the motor input can reduce fatigue, which is often a limiting factor of functional electrical stimulation (FES) exercises, too much assistance can slow progress. For a person with a neurological impairment, FES can assist by strategically contracting their muscle(s) to achieve a desired limb movement; however, feasibility can be limited due to factors such as subject comfort, muscle mass, unnatural muscle fiber recruitment, and stimulation saturation. Thus, motor assistance in addition to FES can be useful for prolonging exercise while still ensuring physical effort from the person. In this paper, FES is applied to the biceps brachii to perform biceps curls, and motor assistance is applied intermittently whenever the FES input reaches a pre-set comfort threshold. Exponential stability of the human–robot system is proven with a Lyapunov-like switched systems stability analysis. Experimental results from participants with neurological conditions demonstrate the feasibility and performance of the controller.more » « less