skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward next-generation learned robot manipulation
The ever-changing nature of human environments presents great challenges to robot manipulation. Objects that robots must manipulate vary in shape, weight, and configuration. Important properties of the robot, such as surface friction and motor torque constants, also vary over time. Before robot manipulators can work gracefully in homes and businesses, they must be adaptive to such variations. This survey summarizes types of variations that robots may encounter in human environments and categorizes, compares, and contrasts the ways in which learning has been applied to manipulation problems through the lens of adaptability. Promising avenues for future research are proposed at the end.  more » « less
Award ID(s):
1832795
PAR ID:
10231386
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science Robotics
Volume:
6
Issue:
54
ISSN:
2470-9476
Page Range / eLocation ID:
Article No. eabd9461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. arXiv (Ed.)
    This study addresses the challenge of integrating social norms into robot navigation, which is essential for ensuring that robots operate safely and efficiently in human-centric environments. Social norms, often unspoken and implicitly understood among people, are difficult to explicitly define and implement in robotic systems. To overcome this, we derive these norms from real human trajectory data, utilizing the comprehensive ATC dataset to identify the minimum social zones humans and robots must respect. These zones are integrated into the robot’s navigation system by applying barrier functions, ensuring the robot consistently remains within the designated safety set. Simulation results demonstrate that our system effectively mimics human-like navigation strategies, such as passing on the right side and adjusting speed or pausing in constrained spaces. The proposed framework is versatile, easily comprehensible, and tunable, demonstrating the potential to advance the development of robots designed to navigate effectively in human-centric environments. 
    more » « less
  2. null (Ed.)
    Robots have begun operating and collaborating with humans in industrial and social settings. This collaboration introduces challenges: the robot must plan while taking the human’s actions into account. In prior work, the problem was posed as a 2-player deterministic game, with a limited number of human moves. The limit on human moves is unintuitive, and in many settings determinism is undesirable. In this paper, we present a novel planning method for collaborative human-robot manipulation tasks via probabilistic synthesis. We introduce a probabilistic manipulation domain that captures the interaction by allowing for both robot and human actions with states that represent the configurations of the objects in the workspace. The task is specified using Linear Temporal Logic over finite traces (LTLf ). We then transform our manipulation domain into a Markov Decision Process (MDP) and synthesize an optimal policy to satisfy the specification on this MDP. We present two novel contributions: a formalization of probabilistic manipulation domains allowing us to apply existing techniques and a comparison of different encodings of these domains. Our framework is validated on a physical UR5 robot. 
    more » « less
  3. null (Ed.)
    Humanoid robots have had significant research interest in the past two decades. Their classification as mobile manipulators allows them to work in unstructured environments creating new possibilities for human-robot interaction. Object grasping and manipulation are essential and enabling capabilities for mobile humanoid robots that require reliable perception. This paper presents a perception approach using depth images from an RGB-D camera to estimate the work plane and estimate object positions relative to the robot. Results from experiments with a set of object shapes and scenarios are presented. 
    more » « less
  4. Nuclear energy will play a critical role in meeting clean energy targets worldwide. However, nuclear environments are dangerous for humans to operate in due to the presence of highly radioactive materials. Robots can help address this issue by allowing remote access to nuclear and other highly hazardous facilities under human supervision to perform inspection and maintenance tasks during normal operations, help with clean-up missions, and aid in decommissioning. This paper presents our research to help realize humanoid robots in supervisory roles in nuclear environments. Our research focuses on National Aeronautics and Space Administration (NASA’s) humanoid robot, Valkyrie, in the areas of constrained manipulation and motion planning, increasing stability using support contact, dynamic non-prehensile manipulation, locomotion on deformable terrains, and human-in-the-loop control interfaces. 
    more » « less
  5. This project introduces a framework to enable robots to recognize human hand signals, a reliable and feasible device-free means of communication in many noisy environments such as construction sites and airport ramps, to facilitate efficient human-robot collaboration. Various hand signal systems are accepted in many small groups for specific purposes, such as Marshalling on airport ramps and construction site crane operations. Robots must be robust to unpredictable conditions, including various backgrounds and human appearances, an extreme challenge imposed by open environments. To address these challenges, we propose Instant Hand Signal Recognition (IHSR), a learning-based framework with world knowledge of human gestures embedded, for robots to learn novel hand signals in a few samples. It also offers robust zero-shot generalization to recognize learned signals in novel scenarios. Extensive experiments show that our IHSR can learn a novel hand signal in only 50 samples, which is 30+ times more efficient than the state-of-the-art method. It also demonstrates a robust zero-shot generalization for deploying a learned model in unseen environments to recognize hand signals from unseen human users. 
    more » « less