- Award ID(s):
- 1944453
- Publication Date:
- NSF-PAR ID:
- 10334718
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 8
- ISSN:
- 2296-9144
- Sponsoring Org:
- National Science Foundation
More Like this
-
Humanoid robots have had significant research interest in the past two decades. Their classification as mobile manipulators allows them to work in unstructured environments creating new possibilities for human-robot interaction. Object grasping and manipulation are essential and enabling capabilities for mobile humanoid robots that require reliable perception. This paper presents a perception approach using depth images from an RGB-D camera to estimate the work plane and estimate object positions relative to the robot. Results from experiments with a set of object shapes and scenarios are presented.
-
Human-centered environments provide affordances for and require the use of two-handed, or bimanual, manipulations. Robots designed to function in, and physically interact with, these environments have not been able to meet these requirements because standard bimanual control approaches have not accommodated the diverse, dynamic, and intricate coordinations between two arms to complete bimanual tasks. In this work, we enabled robots to more effectively perform bimanual tasks by introducing a bimanual shared-control method. The control method moves the robot’s arms to mimic the operator’s arm movements but provides on-the-fly assistance to help the user complete tasks more easily. Our method used a bimanual action vocabulary, constructed by analyzing how people perform two-hand manipulations, as the core abstraction level for reasoning about how to assist in bimanual shared autonomy. The method inferred which individual action from the bimanual action vocabulary was occurring using a sequence-to-sequence recurrent neural network architecture and turned on a corresponding assistance mode, signals introduced into the shared-control loop designed to make the performance of a particular bimanual action easier or more efficient. We demonstrate the effectiveness of our method through two user studies that show that novice users could control a robot to complete a range of complexmore »
-
Underwater robots, including Remote Operating Vehicles (ROV) and Autonomous Underwater Vehicles (AUV), are currently used to support underwater missions that are either impossible or too risky to be performed by manned systems. In recent years the academia and robotic industry have paved paths for tackling technical challenges for ROV/AUV operations. The level of intelligence of ROV/AUV has increased dramatically because of the recent advances in low-power-consumption embedded computing devices and machine intelligence (e.g., AI). Nonetheless, operating precisely underwater is still extremely challenging to minimize human intervention due to the inherent challenges and uncertainties associated with the underwater environments. Proximity operations, especially those requiring precise manipulation, are still carried out by ROV systems that are fully controlled by a human pilot. A workplace-ready and worker-friendly ROV interface that properly simplifies operator control and increases remote operation confidence is the central challenge for the wide adaptation of ROVs.
This paper examines the recent advances of virtual telepresence technologies as a solution for lowering the barriers to the human-in-the-loop ROV teleoperation. Virtual telepresence refers to Virtual Reality (VR) related technologies that help a user to feel that they were in a hazardous situation without being present at the actual location. We present amore »
-
Abstract Background The worldwide population of older adults will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active at home.
Methods Building on related literature as well as guidance from experts in game design, rehabilitation, and physical and occupational therapy, we developed eight human-robot exercise games for the Baxter Research Robot, six of which involve physical human-robot contact. After extensive iteration, these games were tested in an exploratory user study including 20 younger adult and 20 older adult users.
Results Only socially and physically interactive games fell in the highest ranges for pleasantness, enjoyment, engagement, cognitive challenge, and energy level. Our games successfully spanned three different physical, cognitive, and temporal challenge levels. User trust and confidence in Baxter increased significantly between pre- and post-study assessments. Older adults experienced higher exercise, energy, and engagement levels than younger adults, and women rated the robot more highly than men on several survey questions.
Conclusions The results indicate that social-physical exercise with a robot is more pleasant, enjoyable, engaging, cognitively challenging, and energetic than similar interactions that lack physical touch. In addition to this main finding, researchers working in similar areas can build onmore »
-
Whole-body control (WBC) is a generic task-oriented control method for feedback control of loco-manipulation behaviors in humanoid robots. The combination of WBC and model-based walking controllers has been widely utilized in various humanoid robots. However, to date, the WBC method has not been employed for unsupported passive-ankle dynamic locomotion. As such, in this article, we devise a new WBC, dubbed the whole-body locomotion controller (WBLC), that can achieve experimental dynamic walking on unsupported passive-ankle biped robots. A key aspect of WBLC is the relaxation of contact constraints such that the control commands produce reduced jerk when switching foot contacts. To achieve robust dynamic locomotion, we conduct an in-depth analysis of uncertainty for our dynamic walking algorithm called the time-to-velocity-reversal (TVR) planner. The uncertainty study is fundamental as it allows us to improve the control algorithms and mechanical structure of our robot to fulfill the tolerated uncertainty. In addition, we conduct extensive experimentation for: (1) unsupported dynamic balancing (i.e., in-place stepping) with a six-degree-of-freedom biped, Mercury; (2) unsupported directional walking with Mercury; (3) walking over an irregular and slippery terrain with Mercury; and 4) in-place walking with our newly designed ten-DoF viscoelastic liquid-cooled biped, DRACO. Overall, the main contributions of thismore »