skip to main content

Title: Elasticity-oriented design of solid-state batteries: challenges and perspectives
Engineering energy dense electrodes (e.g. lithium metal, conversion cathodes, etc.) with solid electrolytes is important for enhancing the practical energy density of solid-state batteries. However, large electrode volumetric strain can cause significant drive fracture, delamination, and accelerate degradation. This review discusses transport and chemo-mechanical challenges associated with energy dense solid state batteries. In particular, this review focuses on summarizing work which provides design strategies for implementation on energy dense anodes with rigid solid electrolytes. This review further assesses the properties which impact the elasticity of inorganic solid electrolytes and inorganic/organic hybrid electrolyte. Finally, this review discusses the advanced characterization approaches for analyzing the coupled electrochemistry/transport/mechanical phenomena that occur at buried solid-solid interfaces  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Materials Chemistry A
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The introduction of new, safe, and reliable solid‐electrolyte chemistries and technologies can potentially overcome the challenges facing their liquid counterparts while widening the breadth of possible applications. Through tech‐historic evolution and rationally analyzing the transition from liquid‐based Li‐ion batteries (LIBs) to all‐solid‐state Li‐metal batteries (ASSLBs), a roadmap for the development of a successful oxide and sulfide‐based ASSLB focusing on interfacial challenges is introduced, while accounting for five parameters: energy density, power density, longterm stability, processing, and safety. First taking a strategic approach, this review dismantles the ASSLB into its three major components and discusses the most promising solid electrolytes and their most advantageous pairing options with oxide cathode materials and the Li metal anode. A thorough analysis of the chemical, electrochemical, and mechanical properties of the two most promising and investigated classes of inorganic solid electrolytes, namely oxides and sulfides, is presented. Next, the overriding challenges associated with the pairing of the solid electrolyte with oxide‐based cathodes and a Li‐metal anode, leading to limited performance for solid‐state batteries are extensively addressed and possible strategies to mitigate these issues are presented. Finally, future perspectives, guidelines, and selective interface engineering strategies toward the resolution of these challenges are analyzed and discussed.

    more » « less
  2. Solid-state lithium batteries (SSLBs) are promising candidates for replacing traditional liquid-based Li-ion batteries and revolutionizing battery systems for electric vehicles and portable devices. However, longstanding issues such as form factors, interfacial contact resistance, balance between ion conductivity and mechanical strength, and manufacturing processability limit their applications. In this review we present how advanced printing technologies can help to mitigate typical problems in main components of SSLBs and improve device performance. We first introduce the common printing techniques for energy storage devices, then focus on the issues and corresponding printing strategies for anodes, cathodes, and solid-state electrolytes to guide the construction of energy-dense, free-form SSLBs. The features and effects of the printed structures are emphasized, as well. We conclude by discussing the problems associated with printing technologies and the potential research directions for printed solid-state batteries. 
    more » « less
  3. Solid inorganic and polymeric electrolytes have the potential to enable rechargeable batteries with higher energy densities, compared to current lithium-ion technology, which uses liquid electrolyte. Inorganic materials such as ceramics and glasses conduct lithium ions well, but they are brittle, which makes incorporation into a battery difficult. Polymers have the flexibility for facile use in a battery, but their transport properties tend to be inferior to inorganics. Thus, there is growing interest in composite electrolytes with inorganic and organic phases in intimate contact. This article begins with a discussion of ion transport in single-phase electrolytes. A dimensionless number (the Newman number) is presented for quantifying the efficacy of electrolytes. An effective medium framework for predicting transport properties of composite electrolytes containing only one conducting phase is then presented. The opportunities and challenges presented by composite electrolytes containing two conducting phases are addressed. Finally, the importance and status of reaction kinetics at the interfaces between solid electrolytes and electrodes are covered, using a lithium-metal electrode as an example. 
    more » « less
  4. Solid-state sulfur cathodes based on inorganic sulfide solid electrolytes can enable energy-dense lithium batteries. However, volume changes and chemical decomposition can drive delamination and degradation during cycling. To overcome these challenges, this paper reports an in situ approach to encapsulate the solid-state sulfur cathode with a gel polymer electrolyte (GPE). The GPE is covalently bonded with the sulfide solid electrolyte and acts as a barrier that suppresses chemical decomposition between the sulfide solid electrolyte and cathode active material. The elastic GPE maintains interfacial contact within the sulfur cathode allowing for greater sulfur utilization. The solid-state sulfur cathode with GPE demonstrates capacities nearing 700 mAh g −1 and capacity retention over 100 cycles. 
    more » « less
  5. Abstract

    Sulfide solid electrolytes are promising inorganic solid electrolytes for all‐solid‐state batteries. Despite their high ionic conductivity and desirable mechanical properties, many known sulfide solid electrolytes exhibit poor air stability. The spontaneous hydrolysis reactions of sulfides with moisture in air lead to the release of toxic hydrogen sulfide and materials degradation, hindering large‐scale manufacturing and applications of sulfide‐based solid‐state batteries. In this work, we systematically investigate the hydrolysis and reduction reactions in Li‐ and Na‐containing sulfides and chlorides by applying thermodynamic analyses based on a first principles computation database. We reveal the stability trends among different chemistries and identify the effect of cations, anions, and Li/Na content on moisture stability. Our results identify promising materials systems to simultaneously achieve desirable moisture stability and electrochemical stability, and provide the design principles for the development of air‐stable solid electrolytes.

    more » « less