The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains.
- Award ID(s):
- 1850102
- PAR ID:
- 10231674
- Date Published:
- Journal Name:
- The European Physical Journal Special Topics
- Volume:
- 229
- Issue:
- 17-18
- ISSN:
- 1951-6355
- Page Range / eLocation ID:
- 2757 to 2778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Across mammalia, brain morphology follows specific scaling patterns. Bigger bodies have bigger brains, with surface area outpacing volume growth, resulting in increased foldedness. We have recently studied scaling rules of cortical thickness, both local and global, finding that the cortical thickness difference between thick gyri and thin sulci also increases with brain size and foldedness. Here, we investigate early brain development in humans, using subjects from the Developing Human Connectome Project, scanned shortly after pre-term or full-term birth, yielding magnetic resonance images of the brain from 29 to 43 postmenstrual weeks. While the global cortical thickness does not change significantly during this development period, its distribution does, with sulci thinning, while gyri thickening. By comparing our results with our recent work on humans and 11 non-human primate species, we also compare the trajectories of primate evolution with human development, noticing that the 2 trends are distinct for volume, surface area, cortical thickness, and gyrification index. Finally, we introduce the global shape index as a proxy for gyrification index; while correlating very strongly with gyrification index, it offers the advantage of being calculated only from local quantities without generating a convex hull or alpha surface.
-
Abstract The past decade has experienced renewed interest in the physical processes that fold the developing cerebral cortex. Biomechanical models and experiments suggest that growth of the cortex, outpacing growth of underlying subcortical tissue (prospective white matter), is sufficient to induce folding. However, current models do not explain the well-established links between white matter organization and fold morphology, nor do they consider subcortical remodeling that occurs during the period of folding. Here we propose a framework by which cortical folding may induce subcortical fiber growth and organization. Simulations incorporating stress-induced fiber elongation indicate that subcortical stresses resulting from folding are sufficient to induce stereotyped fiber organization beneath gyri and sulci. Model predictions are supported by high-resolution ex vivo diffusion tensor imaging of the developing rhesus macaque brain. Together, results provide support for the theory of cortical growth-induced folding and indicate that mechanical feedback plays a significant role in brain connectivity.more » « less
-
Abstract Current brain mapping methods highly depend on the regularity, or commonality, of anatomical structure, by forcing the same atlas to be matched to different brains. As a result, individualized structural information can be overlooked. Recently, we conceptualized a new type of cortical folding pattern called the 3-hinge gyrus (3HG), which is defined as the conjunction of gyri coming from three directions. Many studies have confirmed that 3HGs are not only widely existing on different brains, but also possess both common and individual patterns. In this work, we put further effort, based on the identified 3HGs, to establish the correspondences of individual 3HGs. We developed a learning-based embedding framework to encode individual cortical folding patterns into a group of anatomically meaningful embedding vectors (cortex2vector). Each 3HG can be represented as a combination of these embedding vectors via a set of individual specific combining coefficients. In this way, the regularity of folding pattern is encoded into the embedding vectors, while the individual variations are preserved by the multi-hop combination coefficients. Results show that the learned embeddings can simultaneously encode the commonality and individuality of cortical folding patterns, as well as robustly infer the complicated many-to-many anatomical correspondences among different brains.
-
Abstract Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total
n = 3355; ages 5–23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.