skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering Curriculum in Support of Industry 4.0
The paper discusses how multiphysics simulations and applications are being used to build essential skills in preparation for entry into an Industry 4.0 workforce. In a highly networked and collaborative human/machine cyberspace, some important competencies for engineering graduates include the ability to: (1) explore design options and results easily between suites of software, (2) predict and visualize performance of complex problems in the beginning phase of the design process, and (3) identify and optimize key parameters prior to fabrication. We describe how integrated project- and inquiry-based learning in the context of a simulation environment and across the curriculum is improving student readiness and transition into industry. Our paper offers a template of how to transition into a curriculum that produces newly minted engineers better equipped to engage in complex design. Examples of project assignments, assessment methods, and student work are discussed as well as future plans.  more » « less
Award ID(s):
1920097
PAR ID:
10231713
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Journal of Online and Biomedical Engineering (iJOE)
Volume:
17
Issue:
01
ISSN:
2626-8493
Page Range / eLocation ID:
4; 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a huge lack of qualified personnel in advanced manufacturing in the U.S. Midwest stemming from a lack of student interest compounded with a lack of experienced teachers who usually motivate students. This paper describes the findings of an NSF RET project at Bowling Green State University that successfully addresses the common need to produce STEM graduates in the advanced manufacturing area. The NSF-RET project’s unique hands-on research experience combined with local industry collaboration prepare future STEM teachers, who can interject research experience in a classroom learning and tie that with the real-world implementations. The project cements the partnership among BGSU, local high schools, and community colleges in Ohio to address the common need of producing STEM graduates in advanced manufacturing area. This project addresses the workforce needs by producing competent high schools and community college educators, who are capable to blend research with educational activities at their institutions, motivate students for STEM degrees, and build long-term collaborative partnerships in the region. This project focused on two goals: (1) explore a sustainable educational model that connects high schools, community colleges, university, and industry; and (2) play a transformational role in preparing future leaders in advanced manufacturing. This paper explains the need, scope, and nature of the curriculum development process through engaging K-14 educators. This paper will share some of their successful research projects, how they translated their research into actionable curriculum modules, and some lessons learned from implementations. 
    more » « less
  2. Learning mathematics in a student-centered, problem-based classroom requires students to develop mathematical understanding and reasoning collaboratively with others. Despite its critical role in students’ collaborative learning in groups and classrooms, evidence of student thinking has rarely been perceived and utilized as a resource for planning and teaching. This is in part because teachers have limited access to student work in paper-and-pencil classrooms. As an alternative approach to making student thinking visible and accessible, a digital collaborative platform embedded with a problem-based middle school mathematics curriculum is developed through an ongoing design-based research project (Edson & Phillips, 2021). Drawing from a subset of data collected for the larger research project, we investigated how students generated mathematical inscriptions during small group work, and how teachers used evidence of students’ solution strategies inscribed on student digital workspaces. Findings show that digital flexibility and mobility allowed students to easily explore different strategies and focus on developing mathematical big ideas, and teachers to foreground student thinking when facilitating whole-class discussions and planning for the next lesson. This study provides insights into understanding mathematics teachers’ interactions with digital curriculum resources in the pursuit of students’ meaningful engagement in making sense of mathematical ideas. 
    more » « less
  3. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  4. null (Ed.)
    Abstract Insufficient engineering analysis is a common weakness of student capstone design projects. Efforts made earlier in a curriculum to introduce analysis techniques should improve student confidence in applying these important skills toward design. To address student shortcomings in design, we implemented a new design project assignment for second-year undergraduate biomedical engineering students. The project involves the iterative design of a fracture fixation plate and is part of a broader effort to integrate relevant hands-on projects throughout our curriculum. Students are tasked with (1) using computer-aided design (CAD) software to make design changes to a fixation plate, (2) creating and executing finite element models to assess performance after each change, (3) iterating through three design changes, and (4) performing mechanical testing of the final device to verify model results. Quantitative and qualitative methods were used to assess student knowledge, confidence, and achievement in design. Students exhibited design knowledge gains and cognizance of prior coursework knowledge integration into their designs. Further, students self-reported confidence gains in approaching design, working with hardware and software, and communicating results. Finally, student self-assessments exceeded instructor assessment of student design reports, indicating that students have significant room for growth as they progress through the curriculum. Beyond the gains observed in design knowledge, confidence, and achievement, the fracture fixation project described here builds student experience with CAD, finite element analysis, 3D printing, mechanical testing, and design communication. These skills contribute to the growing toolbox that students ultimately bring to capstone design. 
    more » « less
  5. This innovative practice work in progress paper describes an interdisciplinary course, “Industry 4.0 Robotics,” aimed at fostering deep learning and innovation in students across Manufacturing, Robotics, Computer Science, Software Engineering, Networking, Cybersecurity, and Technology Management. The course, jointly taught by faculty from different domains, emphasizes interdisciplinary connections in Industry 4.0 (IN4.0) Robotics through a combination of lectures, real-world insights from industry guest speakers, and hands-on interdisciplinary project-based learning. The contribution of this work lies in its innovative approach that combines proven best practices in education, inspiring deep learning, and an appreciation of interdisciplinary teamwork. The course design builds upon education research on the benefits of leveraging student creativity and requirements engineering practices as learning tools that allow students to develop a deeper understanding. While the benefits of these practices, commonly cited for developing enhanced problem-solving and cognitive flexibility skills, are becoming well understood in many individual disciplines, far less has been published on best practices for achieving this in interdisciplinary thinking. This course design explores this through using hybrid experiential problem based learning and project based learning for students to develop an understanding of interdisciplinary challenges and opportunities. While the benefits of individual educational practices have been studied within specific disciplines, this work extends the understanding of these practices when applied to interdisciplinary challenges, such as those encountered in Industry 4.0 robotics. The course design aims to bridge the gap between the technical aspects of individual disciplines and the social dimensions inherent in interdisciplinary work. This work in progress seeks to share early results showcasing the benefits of interdisciplinary teamwork and problem-solving. By articulating observations of commonalities and differences with prior work within individual disciplines, the paper aims to highlight the unique advantages of this interdisciplinary learning experience, offering insights into the potential impact on student learning. The chosen approach stems from the anticipation of future challenges increasingly necessitating interdisciplinary solutions. The goal of this work is to understand how best practices from individual disciplines can be effectively incorporated into interdisciplinary courses, maximizing student learning, and uncovering unique learning outcomes resulting from this innovative approach. The course design intentionally bridges the gap between the technical aspects of individual disciplines and the social dimensions inherent in interdisciplinary work, to encourage effective communication and collaboration within mixed student teams. While this remains a work in progress, initial observations reveal a heightened interdisciplinary curiosity among students, driving deep learning as they explore the interconnectedness of their own discipline with others within their teams. This curiosity propels self-led exploration and understanding of how their expertise intersects with diverse knowledge areas, creating opportunities for innovative solutions at these disciplinary intersections. This work contributes to the broader landscape of engineering and computing education by offering insights into the practical application of interdisciplinary learning in preparing students for the complex challenges of Industry 4.0. 
    more » « less