skip to main content


Title: Emergence of relational reasoning
We review recent theoretical and empirical work on the emergence of relational reasoning, drawing connections among the fields of comparative psychology, developmental psychology, cognitive neuroscience, cognitive science, and machine learning. Relational learning appears to involve multiple systems: a suite of Early Systems that are available to human infants and are shared to some extent with nonhuman animals; and a Late System that emerges in humans only, at approximately age three years. The Late System supports reasoning with explicit role-governed relations, and is closely tied to the functions of a frontoparietal network in the human brain. Recent work in cognitive science and machine learning suggests that humans (and perhaps machines) may acquire abstract relations from nonrelational inputs by means of processes that enable re-representation.  more » « less
Award ID(s):
1827374
NSF-PAR ID:
10231808
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Current opinion in behavioral sciences
Volume:
37
ISSN:
2352-1554
Page Range / eLocation ID:
118-124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this review is to bring together material from cognitive psychology with recent machine vision studies to identify plausible neural mechanisms for visual same-different discrimination and relational understanding. We highlight how developments in the study of artificial neural networks provide computational evidence implicating attention and working memory in the ascertaining of visual relations, including same- different relations. We review some recent attempts to incorporate these mechanisms into flexible models of visual reasoning. Particular attention is given to recent models jointly trained on visual and linguistic information. These recent systems are promising, but they still fall short of the biological standard in several ways, which we outline in a final section. 
    more » « less
  2. A hallmark of human intelligence is the ability to understand and influence other minds. Humans engage in inferential social learning (ISL) by using commonsense psychology to learn from others and help others learn. Recent advances in artificial intelligence (AI) are raising new questions about the feasibility of human–machine interactions that support such powerful modes of social learning. Here, we envision what it means to develop socially intelligent machines that can learn, teach, and communicate in ways that are characteristic of ISL. Rather than machines that simply predict human behaviours or recapitulate superficial aspects of human sociality (e.g. smiling, imitating), we should aim to build machines that can learn from human inputs and generate outputs for humans by proactively considering human values, intentions and beliefs. While such machines can inspire next-generation AI systems that learn more effectively from humans (as learners) and even help humans acquire new knowledge (as teachers), achieving these goals will also require scientific studies of its counterpart: how humans reason about machine minds and behaviours. We close by discussing the need for closer collaborations between the AI/ML and cognitive science communities to advance a science of both natural and artificial intelligence. This article is part of a discussion meeting issue ‘Cognitive artificial intelligence’. 
    more » « less
  3. To achieve human-like common sense about everyday life, machine learning systems must understand and reason about the goals, preferences, and actions of other agents in the environment. By the end of their first year of life, human infants intuitively achieve such common sense, and these cognitive achievements lay the foundation for humans' rich and complex understanding of the mental states of others. Can machines achieve generalizable, commonsense reasoning about other agents like human infants? The Baby Intuitions Benchmark (BIB) challenges machines to predict the plausibility of an agent's behavior based on the underlying causes of its actions. Because BIB's content and paradigm are adopted from developmental cognitive science, BIB allows for direct comparison between human and machine performance. Nevertheless, recently proposed, deep-learning-based agency reasoning models fail to show infant-like reasoning, leaving BIB an open challenge. 
    more » « less
  4. Human reasoning goes beyond knowledge about individual entities, extending to inferences based on relations between entities. Here we focus on the use of relations in verbal analogical mapping, sketching a general approach based on assessing similarity between patterns of semantic relations between words. This approach combines research in artificial intelligence with work in psychology and cognitive science, with the aim of minimizing hand coding of text inputs for reasoning tasks. The computational framework takes as inputs vector representations of individual word meanings, coupled with semantic representations of the relations between words, and uses these inputs to form semantic-relation networks for individual analogues. Analogical mapping is operationalized as graph matching under cognitive and computational constraints. The approach highlights the central role of semantics in analogical mapping. 
    more » « less
  5. Abstract

    Advances in artificial intelligence have raised a basic question about human intelligence: Is human reasoning best emulated by applying task‐specific knowledge acquired from a wealth of prior experience, or is it based on the domain‐general manipulation and comparison of mental representations? We address this question for the case of visual analogical reasoning. Using realistic images of familiar three‐dimensional objects (cars and their parts), we systematically manipulated viewpoints, part relations, and entity properties in visual analogy problems. We compared human performance to that of two recent deep learning models (Siamese Network and Relation Network) that were directly trained to solve these problems and to apply their task‐specific knowledge to analogical reasoning. We also developed a new model using part‐based comparison (PCM) by applying a domain‐general mapping procedure to learned representations of cars and their component parts. Across four‐term analogies (Experiment 1) and open‐ended analogies (Experiment 2), the domain‐general PCM model, but not the task‐specific deep learning models, generated performance similar in key aspects to that of human reasoners. These findings provide evidence that human‐like analogical reasoning is unlikely to be achieved by applying deep learning with big data to a specific type of analogy problem. Rather, humans do (and machines might) achieve analogical reasoning by learning representations that encode structural information useful for multiple tasks, coupled with efficient computation of relational similarity.

     
    more » « less