skip to main content

Title: Emergence of relational reasoning
We review recent theoretical and empirical work on the emergence of relational reasoning, drawing connections among the fields of comparative psychology, developmental psychology, cognitive neuroscience, cognitive science, and machine learning. Relational learning appears to involve multiple systems: a suite of Early Systems that are available to human infants and are shared to some extent with nonhuman animals; and a Late System that emerges in humans only, at approximately age three years. The Late System supports reasoning with explicit role-governed relations, and is closely tied to the functions of a frontoparietal network in the human brain. Recent work in cognitive science and machine learning suggests that humans (and perhaps machines) may acquire abstract relations from nonrelational inputs by means of processes that enable re-representation.
Authors:
;
Award ID(s):
1827374
Publication Date:
NSF-PAR ID:
10231808
Journal Name:
Current opinion in behavioral sciences
Volume:
37
Page Range or eLocation-ID:
118-124
ISSN:
2352-1554
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this review is to bring together material from cognitive psychology with recent machine vision studies to identify plausible neural mechanisms for visual same-different discrimination and relational understanding. We highlight how developments in the study of artificial neural networks provide computational evidence implicating attention and working memory in the ascertaining of visual relations, including same- different relations. We review some recent attempts to incorporate these mechanisms into flexible models of visual reasoning. Particular attention is given to recent models jointly trained on visual and linguistic information. These recent systems are promising, but they still fall short of themore »biological standard in several ways, which we outline in a final section.« less
  2. To achieve human-like common sense about everyday life, machine learning systems must understand and reason about the goals, preferences, and actions of other agents in the environment. By the end of their first year of life, human infants intuitively achieve such common sense, and these cognitive achievements lay the foundation for humans' rich and complex understanding of the mental states of others. Can machines achieve generalizable, commonsense reasoning about other agents like human infants? The Baby Intuitions Benchmark (BIB) challenges machines to predict the plausibility of an agent's behavior based on the underlying causes of its actions. Because BIB's contentmore »and paradigm are adopted from developmental cognitive science, BIB allows for direct comparison between human and machine performance. Nevertheless, recently proposed, deep-learning-based agency reasoning models fail to show infant-like reasoning, leaving BIB an open challenge.« less
  3. Human reasoning goes beyond knowledge about individual entities, extending to inferences based on relations between entities. Here we focus on the use of relations in verbal analogical mapping, sketching a general approach based on assessing similarity between patterns of semantic relations between words. This approach combines research in artificial intelligence with work in psychology and cognitive science, with the aim of minimizing hand coding of text inputs for reasoning tasks. The computational framework takes as inputs vector representations of individual word meanings, coupled with semantic representations of the relations between words, and uses these inputs to form semantic-relation networks formore »individual analogues. Analogical mapping is operationalized as graph matching under cognitive and computational constraints. The approach highlights the central role of semantics in analogical mapping.« less
  4. By middle childhood, humans are able to learn abstract semantic relations (e.g., antonym, synonym, category membership) and use them to reason by analogy. A deep theoretical challenge is to show how such abstract relations can arise from nonrelational inputs, thereby providing key elements of a protosymbolic representation system. We have developed a computational model that exploits the potential synergy between deep learning from “big data” (to create semantic features for individual words) and supervised learning from “small data” (to create representations of semantic relations between words). Given as inputs labeled pairs of lexical representations extracted by deep learning, the modelmore »creates augmented representations by remapping features according to the rank of differences between values for the two words in each pair. These augmented representations aid in coping with the feature alignment problem (e.g., matching those features that make “love-hate” an antonym with the different features that make “rich-poor” an antonym). The model extracts weight distributions that are used to estimate the probabilities that new word pairs instantiate each relation, capturing the pattern of human typicality judgments for a broad range of abstract semantic relations. A measure of relational similarity can be derived and used to solve simple verbal analogies with human-level accuracy. Because each acquired relation has a modular representation, basic symbolic operations are enabled (notably, the converse of any learned relation can be formed without additional training). Abstract semantic relations can be induced by bootstrapping from nonrelational inputs, thereby enabling relational generalization and analogical reasoning.

    « less
  5. Lierler, Yuliya ; Morales, Jose F ; Dodaro, Carmine ; Dahl, Veroniica ; Gebser, Martin ; Tekle, Tuncay (Ed.)
    Knowledge representation and reasoning (KRR) systems represent knowledge as collections of facts and rules. Like databases, KRR systems contain information about domains of human activities like industrial enterprises, science, and business. KRRs can represent complex concepts and relations, and they can query and manipulate information in sophisticated ways. Unfortunately, the KRR technology has been hindered by the fact that specifying the requisite knowledge requires skills that most domain experts do not have, and professional knowledge engineers are hard to find. One solution could be to extract knowledge from English text, and a number of works have attempted to do somore »(OpenSesame, Google's Sling, etc.). Unfortunately, at present, extraction of logical facts from unrestricted natural language is still too inaccurate to be used for reasoning, while restricting the grammar of the language (so-called controlled natural language, or CNL) is hard for the users to learn and use. Nevertheless, some recent CNL-based approaches, such as the Knowledge Authoring Logic Machine (KALM), have shown to have very high accuracy compared to others, and a natural question is to what extent the CNL restrictions can be lifted. In this paper, we address this issue by transplanting the KALM framework to a neural natural language parser, mStanza. Here we limit our attention to authoring facts and queries and therefore our focus is what we call factual English statements. Authoring other types of knowledge, such as rules, will be considered in our followup work. As it turns out, neural network based parsers have problems of their own and the mistakes they make range from part-of-speech tagging to lemmatization to dependency errors. We present a number of techniques for combating these problems and test the new system, KALMFL (i.e., KALM for factual language), on a number of benchmarks, which show KALMFL achieves correctness in excess of 95%.« less