skip to main content

Title: A Reference Genome Assembly of Simmental Cattle, Bos taurus taurus
Abstract Genomics research has relied principally on the establishment and curation of a reference genome for the species. However, it is increasingly recognized that a single reference genome cannot fully describe the extent of genetic variation within many widely distributed species. Pangenome representations are based on high-quality genome assemblies of multiple individuals and intended to represent the broadest possible diversity within a species. A Bovine Pangenome Consortium (BPC) has recently been established to begin assembling genomes from more than 600 recognized breeds of cattle, together with other related species to provide information on ancestral alleles and haplotypes. Previously reported de novo genome assemblies for Angus, Brahman, Hereford, and Highland breeds of cattle are part of the initial BPC effort. The present report describes a complete single haplotype assembly at chromosome-scale for a fullblood Simmental cow from an F1 bison–cattle hybrid fetus by trio binning. Simmental cattle, also known as Fleckvieh due to their red and white spots, originated in central Europe in the 1830s as a triple-purpose breed selected for draught, meat, and dairy production. There are over 50 million Simmental cattle in the world, known today for their fast growth and beef yields. This assembly (ARS_Simm1.0) is similar in more » length to the other bovine assemblies at 2.86 Gb, with a scaffold N50 of 102 Mb (max scaffold 156.8 Mb) and meets or exceeds the continuity of the best Bos taurus reference assemblies to date. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Koepfli, Klaus-Peter
Award ID(s):
Publication Date:
Journal Name:
Journal of Heredity
Page Range or eLocation-ID:
184 to 191
Sponsoring Org:
National Science Foundation
More Like this
  1. The blue crab, Callinectes sapidus (Rathbun, 1896) is an economically, culturally, and ecologically important species found across the temperate and tropical North and South American Atlantic coast. A reference genome will enable research for this high-value species. Initial assembly combined 200× coverage Illumina paired-end reads, a 60× 8 kb mate-paired library, and 50× PacBio data using the MaSuRCA assembler resulting in a 985 Mb assembly with a scaffold N50 of 153 kb. Dovetail Chicago and HiC sequencing with the 3d DNA assembler and Juicebox assembly tools were then used for chromosome scaffolding. The 50 largest scaffolds span 810 Mb are 1.5–37 Mb long and have a repeat content of 36%. The 190 Mb unplaced sequence is in 3921 sequences over 10 kb with a repeat content of 68%. The final assembly N50 is 18.9 Mb for scaffolds and 9317 bases for contigs. Of arthropod BUSCO, ∼88% (888/1013) were complete and single copies. Using 309 million RNAseq read pairs from 12 different tissues and developmental stages, 25,249 protein-coding genes were predicted. Between C. sapidus and Portunus trituberculatus genomes, 41 of 50 large scaffolds had high nucleotide identity and protein-coding synteny, but 9 scaffolds in both assemblies were not clear matches. The protein-coding genes included 9423 one-to-one putative orthologs, ofmore »which 7165 were syntenic between the two crab species. Overall, the two crab genome assemblies show strong similarities at the nucleotide, protein, and chromosome level and verify the blue crab genome as an excellent reference for this important seafood species.« less
  2. Abstract Background

    The increasing number of chromosome-level genome assemblies has advanced our knowledge and understanding of macroevolutionary processes. Here, we introduce the genome of the desert horned lizard, Phrynosoma platyrhinos, an iguanid lizard occupying extreme desert conditions of the American southwest. We conduct analysis of the chromosomal structure and composition of this species and compare these features across genomes of 12 other reptiles (5 species of lizards, 3 snakes, 3 turtles, and 1 bird).


    The desert horned lizard genome was sequenced using Illumina paired-end reads and assembled and scaffolded using Dovetail Genomics Hi-C and Chicago long-range contact data. The resulting genome assembly has a total length of 1,901.85 Mb, scaffold N50 length of 273.213 Mb, and includes 5,294 scaffolds. The chromosome-level assembly is composed of 6 macrochromosomes and 11 microchromosomes. A total of 20,764 genes were annotated in the assembly. GC content and gene density are higher for microchromosomes than macrochromosomes, while repeat element distributions show the opposite trend. Pathway analyses provide preliminary evidence that microchromosome and macrochromosome gene content are functionally distinct. Synteny analysis indicates that large microchromosome blocks are conserved among closely related species, whereas macrochromosomes show evidence of frequent fusion and fission events among reptiles, even between closelymore »related species.


    Our results demonstrate dynamic karyotypic evolution across Reptilia, with frequent inferred splits, fusions, and rearrangements that have resulted in shuffling of chromosomal blocks between macrochromosomes and microchromosomes. Our analyses also provide new evidence for distinct gene content and chromosomal structure between microchromosomes and macrochromosomes within reptiles.

    « less
  3. Abstract Background The development of trio binning as an approach for assembling diploid genomes has enabled the creation of fully haplotype-resolved reference genomes. Unlike other methods of assembly for diploid genomes, this approach is enhanced, rather than hindered, by the heterozygosity of the individual sequenced. To maximize heterozygosity and simultaneously assemble reference genomes for 2 species, we applied trio binning to an interspecies F1 hybrid of yak (Bos grunniens) and cattle (Bos taurus), 2 species that diverged nearly 5 million years ago. The genomes of both of these species are composed of acrocentric autosomes. Results We produced the most continuous haplotype-resolved assemblies for a diploid animal yet reported. Both the maternal (yak) and paternal (cattle) assemblies have the largest 2 chromosomes in single haplotigs, and more than one-third of the autosomes similarly lack gaps. The maximum length haplotig produced was 153 Mb without any scaffolding or gap-filling steps and represents the longest haplotig reported for any species. The assemblies are also more complete and accurate than those reported for most other vertebrates, with 97% of mammalian universal single-copy orthologs present. Conclusions The high heterozygosity inherent to interspecies crosses maximizes the effectiveness of the trio binning method. The interspecies trio binningmore »approach we describe is likely to provide the highest-quality assemblies for any pair of species that can interbreed to produce hybrid offspring that develop to sufficient cell numbers for DNA extraction.« less
  4. Background High-quality genomic resources facilitate investigations into behavioral ecology, morphological and physiological adaptations, and the evolution of genomic architecture. Lizards in the genus Sceloporus have a long history as important ecological, evolutionary, and physiological models, making them a valuable target for the development of genomic resources. Findings We present a high-quality chromosome-level reference genome assembly, SceUnd1.0 (using 10X Genomics Chromium, HiC, and Pacific Biosciences data), and tissue/developmental stage transcriptomes for the eastern fence lizard, Sceloporus undulatus. We performed synteny analysis with other snake and lizard assemblies to identify broad patterns of chromosome evolution including the fusion of micro- and macrochromosomes. We also used this new assembly to provide improved reference-based genome assemblies for 34 additional Sceloporus species. Finally, we used RNAseq and whole-genome resequencing data to compare 3 assemblies, each representing an increased level of cost and effort: Supernova Assembly with data from 10X Genomics Chromium, HiRise Assembly that added data from HiC, and PBJelly Assembly that added data from Pacific Biosciences sequencing. We found that the Supernova Assembly contained the full genome and was a suitable reference for RNAseq and single-nucleotide polymorphism calling, but the chromosome-level scaffolds provided by the addition of HiC data allowed synteny and whole-genome associationmore »mapping analyses. The subsequent addition of PacBio data doubled the contig N50 but provided negligible gains in scaffold length. Conclusions These new genomic resources provide valuable tools for advanced molecular analysis of an organism that has become a model in physiology and evolutionary ecology.« less
  5. Corynebacterium phoceense is a Gram-positive species previously isolated from human urine. Although other species from the same genus have been associated with urinary tract infections, C. phoceense is currently believed to be a non-pathogenic member of the urogenital microbiota. Prior to our study, only two isolates were described in the literature, and very little is known about the species. Here, we describe C. phoceense UFMG-H7, the first strain of this species isolated from the urine of healthy cattle. The genome for this isolate was produced and compared to the two other publicly available C. phoceense as well as other Corynebacterium genome assemblies. Our in-depth genomic analysis identified four additional publicly available genome assemblies that are representatives of the species, also isolated from the human urogenital tract. Although none of the strains have been associated with symptoms or disease, numerous genes associated with virulence factors are encoded. In contrast to related Corynebacterium species and Corynebacterium species from the bovine vaginal tract, all C. phoceense strains examined code for the SpaD-type pili suggesting adherence is essential for its persistence within the urinary tract. As the other C. phoceense strains analysed were isolated from the human urogenital tract, our results suggest that thismore »species may be specific to this niche.« less