skip to main content


Title: Local Explosion Detection and Infrasound Localization by Reverse Time Migration Using 3-D Finite-Difference Wave Propagation
Infrasound data are routinely used to detect and locate volcanic and other explosions, using both arrays and single sensor networks. However, at local distances (<15 km) topography often complicates acoustic propagation, resulting in inaccurate acoustic travel times leading to biased source locations when assuming straight-line propagation. Here we present a new method, termed Reverse Time Migration-Finite-Difference Time Domain (RTM-FDTD), that integrates numerical modeling into the standard RTM back-projection process. Travel time information is computed across the entire potential source grid via FDTD modeling to incorporate the effects of topography. The waveforms are then back-projected and stacked at each grid point, with the stack maximum corresponding to the likely source. We apply our method to three volcanoes with different network configurations, source-receiver distances, and topography. At Yasur Volcano, Vanuatu, RTM-FDTD locates explosions within ∼20 m of the source and differentiates between multiple vents. RTM-FDTD produces a more accurate location for the two Yasur subcraters than standard RTM and doubles the number of detected events. At Sakurajima Volcano, Japan, RTM-FDTD locates the source within 50 m of the active vent despite notable topographic blocking. The RTM-FDTD location is similar to that from the Time Reversal Mirror method, but is more computationally efficient. Lastly, at Shishaldin Volcano, Alaska, RTM and RTM-FDTD both produce realistic source locations (<50 m) for ground-coupled airwaves recorded on a four-station seismic network. We show that RTM is an effective method to detect and locate infrasonic sources across a variety of scenarios, and by integrating numerical modeling, RTM-FDTD produces more accurate source locations and increases the detection capability.  more » « less
Award ID(s):
1614855 1847736 1952392
NSF-PAR ID:
10232222
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
9
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A new episode of unrest and phreatic/phreatomagmatic/magmatic eruptions occurred at Ambae volcano, Vanuatu, in 2017–2018. We installed a multi-station seismo-acoustic network consisting of seven 3-component broadband seismic stations and four 3-element (26–62 m maximum inter-element separation) infrasound arrays during the last phase of the 2018 eruption episode, capturing at least six reported major explosions towards the end of the eruption episode. The observed volcanic seismic signals are generally in the passband 0.5–10 Hz during the eruptive activity, but the corresponding acoustic signals have relatively low frequencies (< 1 Hz). Apparent very-long-period (< 0.2 Hz) seismic signals are also observed during the eruptive episode, but we show that they are generated as ground-coupled airwaves and propagate with atmospheric acoustic velocity. We observe strongly coherent infrasound waves at all acoustic arrays during the eruptions. Using waveform similarity of the acoustic signals, we detect previously unreported volcanic explosions at the summit vent region based on constant-celerity reverse-time-migration (RTM) analysis. The detected acoustic bursts are temporally related to shallow seismic volcanic tremor (frequency content of 5–10 Hz), which we characterise using a simplified amplitude ratio method at a seismic station pair with different distances from the vent. The amplitude ratio increased at the onset of large explosions and then decreased, which is interpreted as the seismic source ascent and descent. The ratio change is potentially useful to recognise volcanic unrest using only two seismic stations quickly. This study reiterates the value of joint seismo-acoustic data for improving interpretation of volcanic activity and reducing ambiguity in geophysical monitoring. 
    more » « less
  2. SUMMARY

    Yasur volcano, Vanuatu is a continuously active open-vent basaltic-andesite stratocone with persistent and long-lived eruptive activity. We present results from a seismo-acoustic field experiment at Yasur, providing locally dense broad-band seismic and infrasonic network coverage from 2016 July 27 to August 3. We corroborate our seismo-acoustic observations with coincident video data from cameras deployed at the crater and on an unoccupied aircraft system (UAS). The waveforms contain a profusion of signals reflecting Yasur’s rapidly occurring and persistent explosive activity. The typical infrasonic signature of Yasur explosions is a classic short-duration and often asymmetric explosion waveform characterized by a sharp compressive onset and wideband frequency content. The dominant seismic signals are numerous repetitive very-long-period (VLP) signals with periods of ∼2–10 s. The VLP seismic events are ‘high-rate’, reoccurring near-continuously throughout the data set with short interevent times (∼20–60 s). We observe variability in the synchronization of seismic VLP and acoustic sources. Explosion events clearly delineated by infrasonic waveforms are underlain by seismic VLPs. However, strong seismic VLPs also occur with only a weak infrasonic expression. Multiplet analysis of the seismic VLPs reveals a systematic progression in the seismo-acoustic source decoupling. The same dominant seismic VLP multiplet occurs with and without surficial explosions and infrasound, and these transitions occur over a timescale of a few days during our field campaign. We subsequently employ template matching, stacking, and full-waveform inversion to image the source mechanism of the dominant VLP multiplet. Inversion of the dominant VLP multiplet stack points to a composite source consisting of either a dual-crack (plus forces) or pipe-crack (plus forces) mechanism. The derived mechanisms correspond to a point-source directly beneath the summit vents with centroid depths in the range ∼900–1000 m below topography. All mechanisms suggest a northeast trending crack dipping relatively shallowly to the northwest and indicate a VLP source centroid and mechanism controlled by a stable structural geologic feature beneath Yasur. We interpret the results in the framework of gas slug ascent through the conduit responsible for Yasur explosions. The VLP mechanism and timing with infrasound (when present) are explained by a shallow-buffered top-down model in which slug ascent is relatively aseismic until reaching the base of a shallow section. Slug disruption in this shallow zone triggers a pressure disturbance that propagates downward and couples at the conduit base (VLP centroid). If the shallow section is open, an explosion propagates to the surface, producing infrasound. In the case of (the same multiplet) VLPs occurring without surficial explosions and weak or no infrasound, the decoupling of the dominant VLPs at ∼900–1000 m depth from surficial explosions and infrasound strongly indicates buffering of the terminal slug ascent. This buffering could be achieved by a variety of conditions at or directly beneath the vents, such as a high-viscosity layer of crystal-rich magma, a debris cap from backfill, a foam layer, or a combination of these. The dominant VLP at Yasur captured by our experiment has a source depth and mechanism separated from surface processes and is stable over time.

     
    more » « less
  3. Abstract

    Sound waves generated by erupting volcanoes can be used to infer important source dynamics, yet acoustic source‐time functions may be distorted during propagation, even at local recording distances (15 km). The resulting uncertainty in source estimates can be reduced by improving constraints on propagation effects. We aim to quantify potential distortions caused by wave steepening during nonlinear propagation, with the aim of improving the accuracy of volcano‐acoustic source predictions. We hypothesize that wave steepening causes spectral energy transfer away from the dominant source frequency. To test this, we apply a previously developed single‐point, frequency domain, quadspectral density‐based nonlinearity indicator to 30 acoustic signals from Vulcanian explosion events at Sakurajima Volcano, Japan, in an 8‐day data set collected by five infrasound stations in 2013 with 2.3‐ to 6.2‐km range. We model these results with a 2‐D axisymmetric finite‐difference method that includes rigid topography, wind, and nonlinear propagation. Simulation results with flat ground indicate that wave steepening causes up to2 dB (1% of source level) of cumulative upward spectral energy transfer for Sakurajima amplitudes. Correction for nonlinear propagation may therefore provide a valuable second‐order improvement in accuracy for source parameter estimates. However, simulations with wind and topography introduce variations in the indicator spectra on order of a few decibels. Nonrandom phase relationships generated during propagation or at the source may be misinterpreted as nonlinear spectral energy transfer. The nonlinearity indicator is therefore best suited to small source‐receiver distances (e.g.,2 km) and volcanoes with simple sources (e.g., gas‐rich strombolian explosions) and topography.

     
    more » « less
  4. Abstract

    Acoustic waveform inversions can provide estimates of volume flow rate and erupted mass, enhancing the ability to estimate volcanic emissions. Previous studies have generally assumed a simple acoustic source (monopole); however, more complex and accurate source reconstructions are possible with a combination of equivalent sources (multipole). We deployed a high‐density acoustic network around Yasur volcano, Vanuatu, including acoustic sensors on a tethered aerostat that was moved every ∼15–60 min. Using this unique data set we invert for the acoustic multipole source mechanism using a grid search approach for 80 events to examine volume flow rates and dipole strengths. Our method utilizes finite‐difference time‐domain modeling to obtain the full 3‐D Green's functions that account for topography. Inversion results are compared using a monopole‐only, multipole (monopole and dipole), simulations that do not include topography, and those that use a subset of sensors. We find that the monopole source is a good approximation when topography is considered. However, initial compression amplitude is not fully captured by a monopole source so source directionality cannot be ruled out. The monopole solution is stable regardless of whether a monopole‐only or multipole inversion is performed. Inversions for the dipole components produce estimates consistent with observed source directionality, though these inversions are somewhat unstable given station configurations of typical deployments. Our results suggest that infrasound waveform inversion shows promise for realistic quantitative source estimates, but additional work is necessary to fully explore inversion stability, uncertainty, and robustness.

     
    more » « less
  5. Abstract

    Volcanic eruption source parameters may be estimated from acoustic pressure recordings dominant at infrasonic frequencies (< 20 Hz), yet uncertainties may be high due in part to poorly understood propagation dynamics. Linear acoustic propagation of volcano infrasound is commonly assumed, but nonlinear processes such as wave steepening may distort waveforms and obscure the sourcing process in recorded waveforms. Here we use a previously developed frequency-domain nonlinearity indicator to quantify spectral changes due to nonlinear propagation primarily in 80 signals from explosions at Yasur Volcano, Vanuatu. We find evidence for$$\le$$10−3 dB/m spectral energy transfer in the band 3–9 Hz for signals with amplitude on the order of several hundred Pa at 200–400 m range. The clarity of the nonlinear spectral signature increases with waveform amplitude, suggesting stronger nonlinear changes for greater source pressures. We observe similar results in application to synthetics generated through finite-difference wavefield simulations of nonlinear propagation, although limitations of the model complicate direct comparison to the observations. Our results provide quantitative evidence for nonlinear propagation that confirms previous interpretations made on the basis of qualitative observations of asymmetric waveforms.

     
    more » « less