skip to main content


Title: Profiles of Instructor Responses to Emergency Distance Learning
To understand instruction during the spring 2020 transition to emergency distance learning (EDL), we surveyed a sample of instructors teaching undergraduate EDL courses at a large university in the southwest. We asked them how frequently they used and how confident they were in their ability to implement each of nine promising practices, both for their spring 2020 EDL course and a time when they previously taught the same course face-to-face (F2F). Using latent class analysis, we examined how behavioral frequencies and confidence clustered to form meaningful groups of instructors, how these groups differed across F2F and EDL contexts, and what predicted membership in EDL groupings. Results suggest that in the EDL context, instructors fell into one of three profiles in terms of how often they used promising practices: Highly Supportive, Instructor Centered, and More Detached. When moving from the F2F to EDL context, instructors tended to shift “down” in terms of their profile—for example, among F2F Highly Supportive instructors, 34% shifted to the EDL Instructor Centered profile and 30% shifted to the EDL More Detached Profile. Instructors who reported lower self-efficacy for EDL practices were also more likely to end up in the EDL More Detached profile. These results can assist universities in understanding instructors' needs in EDL, and what resources, professional development, and institutional practices may best support instructor and student experiences.  more » « less
Award ID(s):
1750386
NSF-PAR ID:
10232250
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Online Learning
Volume:
25
Issue:
1
ISSN:
2472-5749
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Student perceptions of the complete online transition of two CS courses in response to the COVID-19 pandemic Due to the COVID-19 pandemic, universities across the globe switched from traditional Face-to-Face (F2F) course delivery to completely online. Our university declared during our Spring break that students would not return to campus, and that all courses must be delivered fully online starting two weeks later. This was challenging to both students and instructors. In this evidence-based practice paper, we present results of end-of-semester student surveys from two Spring 2020 CS courses: a programming intensive CS2 course, and a senior theory course in Formal Languages and Automata (FLA). Students indicated course components they perceived as most beneficial to their learning, before and then after the online transition, and preferences for each regarding online vs. F2F. By comparing student reactions across courses, we gain insights on which components are easily adapted to online delivery, and which require further innovation. COVID was unfortunate, but gave a rare opportunity to compare students’ reflections on F2F instruction with online instructional materials for half a semester vs. entirely online delivery of the same course during the second half. The circumstances are unique, but we were able to acquire insights for future instruction. Some course components were perceived to be more useful either before or after the transition, and preferences were not the same in the two courses, possibly due to differences in the courses. Students in both courses found prerecorded asynchronous lectures significantly less useful than in-person lectures. For CS2, online office hours were significantly less useful than in-person office hours, but we found no significant difference in FLA. CS2 students felt less supported by their instructor after the online transition, but no significant difference was indicated by FLA students. FLA students found unproctored online exams offered through Canvas more stressful than in-person proctored exams, but the opposite was indicated by CS2 students. CS2 students indicated that visual materials from an eTextbook were more useful to them after going online than before, but FLA students indicated no significant difference. Overall, students in FLA significantly preferred the traditional F2F version of the course, while no significant difference was detected for CS2 students. We did not find significant effects from gender on the preference of one mode over the other. A serendipitous outcome was learning that some changes forced by circumstance should be considered for long term adoption. Offering online lab sessions and online exams where the questions are primarily multiple choice are possible candidates. However, we found that students need to feel the presence of their instructor to feel properly supported. To determine what course components need further improvement before transitioning to fully online mode, we computed a logistic regression model. The dependent variable is the student's preference for F2F or fully online. The independent variables are the course components before and after the online transition. For both courses, in-person lectures were a significant factor negatively affecting students' preferences of the fully online mode. Similarly, for CS2, in-person labs and in-person office hours were significant factors pushing students’ preferences toward F2F mode. 
    more » « less
  2. The crisis-induced changes in instruction during the pandemic presented a unique opportunity to study instructor adaptability, a possible contributor to future adoption of teaching-related best-practices. The purpose of this research is to identify the self-reported activities of engineering instructors and how this changed over the course of three semesters during the COVID-19 pandemic. Approximately 40 engineering instructors from a large Midwestern R1 University voluntarily completed online surveys in during Spring 2020, Fall 2020, and Spring 2021 semesters about their engagement in teaching-related activities and the perceived normality of that engagement. Descriptive statistics were used to examine general trends in activity engagement for each semester and to compare activity engagement across all three semesters. Across all three semesters, instructors most often reported engaging in self-teaching and casual conversations with their colleagues. Instructors cited getting help from staff and attending workshops less frequently. By the end of the third semester (Spring 2021), 85% of participants indicated normality of their teaching methods, compared with 25% at the beginning of the study (Spring 2020). The results of this study suggest that to encourage instructor adaptability in the future, a focus should be placed on developing a supportive instructor community as well as providing necessary space, time, and resources for instructor self-teaching. This research is part of a larger study, whose scope includes instructor interviews, an investigation of cognitive and emotional adaptability, and analysis of additional semesters as instructors continue to adapt. 
    more » « less
  3. Motivation: This is a complete paper. There was a sudden shift from traditional learning to online learning in Spring 2020 with the outbreak of COVID-19. Although online learning is not a new topic of discussion, universities, faculty, and students were not prepared for this sudden change in learning. According to a recent article in ‘The Chronicle of Higher Education, “even under the best of circumstances, virtual learning requires a different, carefully crafted approach to engagement”. The Design Thinking course under study is a required freshmen level course offered in a Mid-western University. The Design Thinking course is offered in a flipped format where all the content to be learned is given to students beforehand and the in-class session is used for active discussions and hands-on learning related to the content provided at the small group level. The final learning objective of the course is a group project where student groups are expected to come up with functional prototypes to solve a real-world problem following the Design Thinking process. There were eighteen sections of the Design Thinking course offered in Spring 2020, and with the outbreak of COVID-19, a few instructors decided to offer synchronous online classes (where instructors were present online during class time and provided orientation and guidance just like a normal class) and a few others decided to offer asynchronous online classes (where orientation from the instructor was delivered asynchronous and the instructor was online during officially scheduled class time but interactions were more like office hours). Students were required to be present synchronously at the team level during the class time in a synchronous online class. In an asynchronous online class, students could be synchronous at the team level to complete their assignment any time prior to the deadline such that they could work during class time but they were not required to work at that time. Through this complete paper, we are trying to understand student learning, social presence and learner satisfaction with respect to different modes of instruction in a freshmen level Design Thinking course. Background: According to literature, synchronous online learning has advantages such as interaction, a classroom environment, and better course quality whereas asynchronous online learning has advantages such as self-controlled and self-directed learning. The disadvantages of synchronous online learning include the learning process, technology issues, and distraction. Social isolation, lack of interaction, and technology issue are a few disadvantages related to asynchronous online learning. Problem Being Addressed: There is a limited literature base investigating different modes of online instruction in a Design Thinking course. Through this paper, we are trying to understand and share the effectiveness of synchronous and asynchronous modes of instruction in an online Flipped Design Thinking Course. The results of the paper could also help in this time of pandemic by shedding light on the more effective way to teach highly active group-based classrooms for better student learning, social presence, and learner satisfaction. Method/Assessment: An end of semester survey was monitored in Spring 2020 to understand student experiences in synchronous and asynchronous Design Thinking course sections. The survey was sent to 720 students enrolled in the course in Spring 2020 and 324 students responded to the survey. Learning was measured using the survey instrument developed by Walker (2003) and the social presence and learner satisfaction was measured by the survey modified by Richardson and Swan (2003). Likert scale was used to measure survey responses. Anticipated Results: Data would be analyzed and the paper would be completed by draft paper submission. As the course under study is a flipped and active course with a significant component of group work, the anticipated results after analysis could be that one mode of instruction has higher student learning, social presence, and learner satisfaction compared to the other. 
    more » « less
  4. College instructors faced a rapid transition to remote instruction in spring 2020, and with it a host of new teaching challenges. This qualitative study investigates what 26 college biology instructors learned about students and teaching during this time. We used semi-structured interviews and content analysis to identify instructor learning that is relevant beyond the COVID-19 pandemic. Participants described two related insights about students: They became more aware that students' lives outside the classroom are complex, and they realized that their campus can act as a neutralizing space for students. Participants also reconsidered how they assess student learning. New realizations about students and teaching have the potential to impact teaching practices when in-person instruction resumes. Especially promising is an increased focus on students as individuals and the recognition that not all students experience life and courses in the same way. We relate findings to existing research and propose self-reflection questions that these findings raised for us 
    more » « less
  5. Community colleges provide an important pathway for many prospective engineering graduates, especially those from traditionally underrepresented groups. However, due to a lack of facilities, resources, student demand and/or local faculty expertise, the breadth and frequency of engineering course offerings is severely restricted at many community colleges. This in turn presents challenges for students trying to maximize their transfer eligibility and preparedness. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of a comprehensive lower-division engineering curriculum, even at small-to-medium sized community colleges. This was accomplished by developing resources and teaching strategies that could be employed in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the iterative development, testing, and refining of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. This course is required as part of recently adopted statewide model associate degree curricula for transfer into Civil, Mechanical, Aerospace, and Manufacturing engineering bachelor’s degree programs at California State Universities. However, offering such a course is particularly challenging for many community colleges, because of a lack of adequate expertise and/or laboratory facilities and equipment. Consequently, course resources were developed to help mitigate these challenges by streamlining preparation for instructors new to teaching the course, as well as minimizing the face-to-face use of traditional materials testing equipment in the laboratory portion of the course. These same resources can be used to support online hybrid and other alternative (e.g., emporium) delivery approaches. After initial pilot implementation of the course during the Spring 2015 semester by the curriculum designer in a flipped student-centered format, these same resources were then implemented by an instructor who had never previously taught the course, at a different community college that did not have its own materials laboratory facilities. A single site visit was arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. Lessons learned during this attempt were used to inform curriculum revisions, which were evaluated in a repeat offering the following year. In all implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on objective assessments was compared with that of traditional lecture delivery of the course by the curriculum designer in prior years. During initial implementations of the course, results from these surveys and assessments revealed low levels of student satisfaction with certain aspects of the flipped approach and course resources, as well as reduced learning among students at the alternate institution. Subsequent modifications to the curriculum and delivery approach were successful in addressing most of these deficiencies. 
    more » « less