skip to main content


Title: A deep explainable artificial intelligent framework for neurological disorders discrimination
Abstract Pathological hand tremor (PHT) is a common symptom of Parkinson’s disease (PD) and essential tremor (ET), which affects manual targeting, motor coordination, and movement kinetics. Effective treatment and management of the symptoms relies on the correct and in-time diagnosis of the affected individuals, where the characteristics of PHT serve as an imperative metric for this purpose. Due to the overlapping features of the corresponding symptoms, however, a high level of expertise and specialized diagnostic methodologies are required to correctly distinguish PD from ET. In this work, we propose the data-driven $$\text {NeurDNet}$$ NeurDNet model, which processes the kinematics of the hand in the affected individuals and classifies the patients into PD or ET. $$\text {NeurDNet}$$ NeurDNet is trained over 90 hours of hand motion signals consisting of 250 tremor assessments from 81 patients, recorded at the London Movement Disorders Centre, ON, Canada. The $$\text {NeurDNet}$$ NeurDNet outperforms its state-of-the-art counterparts achieving exceptional differential diagnosis accuracy of $$95.55\%$$ 95.55 % . In addition, using the explainability and interpretability measures for machine learning models, clinically viable and statistically significant insights on how the data-driven model discriminates between the two groups of patients are achieved.  more » « less
Award ID(s):
2037878 2031594
PAR ID:
10232327
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tremor is one of the main symptoms of Parkinson’s Disease (PD) that reduces the quality of life. Tremor is measured as part of the Unified Parkinson Disease Rating Scale (UPDRS) part III. However, the assessment is based on onsite physical examinations and does not fully represent the patients’ tremor experience in their day-to-day life. Our objective in this paper was to develop algorithms that, combined with wearable sensors, can estimate total Parkinsonian tremor as the patients performed a variety of free body movements. We developed two methods: an ensemble model based on gradient tree boosting and a deep learning model based on long short-term memory (LSTM) networks. The developed methods were assessed on gyroscope sensor data from 24 PD subjects. Our analysis demonstrated that the method based on gradient tree boosting provided a high correlation (r = 0.96 using held-out testing and r = 0.93 using subject-based, leave-one-out cross-validation) between the estimated and clinically assessed tremor subscores in comparison to the LSTM-based method with a moderate correlation (r = 0.84 using held-out testing and r = 0.77 using subject-based, leave-one-out cross-validation). These results indicate that our approach holds great promise in providing a full spectrum of the patients’ tremor from continuous monitoring of the subjects’ movement in their natural environment. 
    more » « less
  2. Parkinson’s disease (PD) is a neurological progressive movement disorder, affecting more than 10 million people globally. PD demands a longitudinal assessment of symptoms to monitor the disease progression and manage the treatments. Existing assessment methods require patients with PD (PwPD) to visit a clinic every 3–6 months to perform movement assessments conducted by trained clinicians. However, periodic visits pose barriers as PwPDs have limited mobility, and healthcare cost increases. Hence, there is a strong demand for using telemedicine technologies for assessing PwPDs in remote settings. In this work, we present an in-home telemedicine kit, named iTex (intelligent Textile), which is a patient-centered design to carry out accessible tele-assessments of movement symptoms in people with PD. iTex is composed of a pair of smart textile gloves connected to a customized embedded tablet. iTex gloves are integrated with flex sensors on the fingers and inertial measurement unit (IMU) and have an onboard microcontroller unit with IoT (Internet of Things) capabilities including data storage and wireless communication. The gloves acquire the sensor data wirelessly to monitor various hand movements such as finger tapping, hand opening and closing, and other movement tasks. The gloves are connected to a customized tablet computer acting as an IoT device, configured to host a wireless access point, and host an MQTT broker and a time-series database server. The tablet also employs a patient-centered interface to guide PwPDs through the movement exam protocol. The system was deployed in four PwPDs who used iTex at home independently for a week. They performed the test independently before and after medication intake. Later, we performed data analysis of the in-home study and created a feature set. The study findings reported that the iTex gloves were capable to collect movement-related data and distinguish between pre-medication and post-medication cases in a majority of the participants. The IoT infrastructure demonstrated robust performance in home settings and offered minimum barriers for the assessment exams and the data communication with a remote server. In the post-study survey, all four participants expressed that the system was easy to use and poses a minimum barrier to performing the test independently. The present findings indicate that the iTex glove system has the potential for periodic and objective assessment of PD motor symptoms in remote settings. 
    more » « less
  3. Essential tremor (ET) is among the most prevalent movement disorders, but its origins are elusive. The inferior olivary nucleus (ION) has been hypothesized as the prime generator of tremor because of the pacemaker properties of ION neurons, but structural and functional changes in ION are unlikely under ET. Abnormalities have instead been reported in the cerebello-thalamo-cortical network, including dysfunctions of the GABAergic projections from the cerebellar cortex to the dentate nucleus. It remains unclear, though, how tremor would relate to a dysfunction of cerebellar connectivity. To address this question, we built a computational model of the cortico-cerebello-thalamo-cortical loop. We simulated the effects of a progressive loss of GABA A α 1 -receptor subunits and up-regulation of α 2/3 -receptor subunits in the dentate nucleus, and correspondingly, we studied the evolution of the firing patterns along the loop. The model closely reproduced experimental evidence for each structure in the loop. It showed that an alteration of amplitudes and decay times of the GABAergic currents to the dentate nucleus can facilitate sustained oscillatory activity at tremor frequency throughout the network as well as a robust bursting activity in the thalamus, which is consistent with observations of thalamic tremor cells in ET patients. Tremor-related oscillations initiated in small neural populations and spread to a larger network as the synaptic dysfunction increased, while thalamic high-frequency stimulation suppressed tremor-related activity in thalamus but increased the oscillation frequency in the olivocerebellar loop. These results suggest a mechanism for tremor generation under cerebellar dysfunction, which may explain the origin of ET. 
    more » « less
  4. Currently doctors rely on tools such as the Unified Parkinson’s Disease Rating Scale (MDS-UDPRS) and the Scale for the Assessment and Rating of Ataxia (SARA) to make diagnoses for movement disorders based on clinical observations of a patient’s motor movement. Observation-based assessments however are inherently subjective and can differ by person. Moreover, different movement disorders show overlapping symptoms, challenging neurologists to make a correct diagnosis based on eyesight alone. In this work, we create an intelligent interface to highlight movements and gestures that are indicative of a movement disorder to observing doctors. First, we analyzed the walking patterns of 43 participants with Parkinson’s Disease (PD), 60 participants with ataxia, and 52 participants with no movement disorder to find ten metrics that can be used to distinguish PD from ataxia. Next, we designed an interface that provides context to the gestures that are relevant to a movement disorder diagnosis. Finally, we surveyed two neurologists (one who specializes in PD and the other who specializes in ataxia) on how useful this interface is for making a diagnosis. Our results not only showcase additional metrics that can be used to evaluate movement disorders quantitatively but also outline steps to be taken when designing an interface for these kinds of diagnostic tasks. 
    more » « less
  5. Abstract There are currently no effective biomarkers for diagnosing Parkinson’s disease (PD) or tracking its progression. Here, we developed an artificial intelligence (AI) model to detect PD and track its progression from nocturnal breathing signals. The model was evaluated on a large dataset comprising 7,671 individuals, using data from several hospitals in the United States, as well as multiple public datasets. The AI model can detect PD with an area-under-the-curve of 0.90 and 0.85 on held-out and external test sets, respectively. The AI model can also estimate PD severity and progression in accordance with the Movement Disorder Society Unified Parkinson’s Disease Rating Scale ( R  = 0.94, P  = 3.6 × 10 –25 ). The AI model uses an attention layer that allows for interpreting its predictions with respect to sleep and electroencephalogram. Moreover, the model can assess PD in the home setting in a touchless manner, by extracting breathing from radio waves that bounce off a person’s body during sleep. Our study demonstrates the feasibility of objective, noninvasive, at-home assessment of PD, and also provides initial evidence that this AI model may be useful for risk assessment before clinical diagnosis. 
    more » « less