skip to main content


Title: On the divergence of first-order resonance widths at low eccentricities
ABSTRACT Orbital resonances play an important role in the dynamics of planetary systems. Classical theoretical analyses found in textbooks report that libration widths of first-order mean motion resonances diverge for nearly circular orbits. Here, we examine the nature of this divergence with a non-perturbative analysis of a few first-order resonances interior to a Jupiter-mass planet. We show that a first-order resonance has two branches, the pericentric and the apocentric resonance zone. As the eccentricity approaches zero, the centres of these zones diverge away from the nominal resonance location but their widths shrink. We also report a novel finding of ‘bridges’ between adjacent first-order resonances: at low eccentricities, the apocentric libration zone of a first-order resonance smoothly connects with the pericentric libration zone of the neighbouring first-order resonance. These bridges may facilitate resonant migration across large radial distances in planetary systems, entirely in the low-eccentricity regime.  more » « less
Award ID(s):
1824869
NSF-PAR ID:
10232440
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
496
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3152 to 3160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Celletti, Alessandra ; Beaugé, Cristian ; Galeş, Cătălin ; Lemaître, Anne (Ed.)
    Perturbative analyses of planetary resonances commonly predict singularities and/or divergences of resonance widths at very low and very high eccentricities. We have recently re-examined the nature of these divergences using non-perturbative numerical analyses, making use of Poincaré sections but from a different perspective relative to previous implementations of this method. This perspective reveals fine structure of resonances which otherwise remains hidden in conventional approaches, including analytical, semi-analytical and numerical-averaging approaches based on the critical resonant angle. At low eccentricity, first order resonances do not have diverging widths but have two asymmetric branches leading away from the nominal resonance location. A sequence of structures called ``low-eccentricity resonant bridges" connecting neighboring resonances is revealed. At planet-grazing eccentricity, the true resonance width is non-divergent. At higher eccentricities, the new results reveal hitherto unknown resonant structures and show that these parameter regions have a loss of some -- though not necessarily entire -- resonance libration zones to chaos. The chaos at high eccentricities was previously attributed to the overlap of neighboring resonances. The new results reveal the additional role of bifurcations and co-existence of phase-shifted resonance zones at higher eccentricities. By employing a geometric point of view, we relate the high eccentricity phase space structures and their transitions to the shapes of resonant orbits in the rotating frame. We outline some directions for future research to advance understanding of the dynamics of mean motion resonances. 
    more » « less
  2. ABSTRACT Mean motion resonances are important in the analysis and understanding of the dynamics of planetary systems. While perturbative approaches have been dominant in many previous studies, recent non-perturbative approaches have revealed novel properties in the low-eccentricity regime for interior mean motion resonances of Jupiter in the fundamental model of the circular planar restricted three-body model. Here, we extend the non-perturbative investigation to exterior mean motion resonances in the low-eccentricity regime (up to about 0.1) and for perturber mass in the range of ∼5 × 10−5 to 1 × 10−3 (in units of the central mass). Our results demonstrate that first-order exterior resonances have two branches at low eccentricity as well as low-eccentricity bridges connecting neighbouring first-order resonances. With increasing perturber mass, higher order resonances dissolve into chaos, whereas low-order resonances persist with larger widths in their radial extent but smaller azimuthal widths. For low-order resonances, we also detect secondary resonances arising from small-integer commensurabilities between resonant librations and the synodic frequency. These secondary resonances contribute significantly to generating the chaotic sea that typically occurs near mean motion resonances of higher mass perturbers. 
    more » « less
  3. Abstract

    Although resonant planets have orbital periods near commensurability, resonance is also dictated by other factors, such as the planets’ eccentricities and masses, and therefore must be confirmed through a study of the system’s dynamics. Here, we perform such a study for five multiplanet systems: Kepler-226, Kepler-254, Kepler-363, Kepler-1542, and K2-32. For each system, we run a suite ofN-body simulations that span the full parameter space that is consistent with the constrained orbital and planetary properties. We study the stability of each system and look for resonances based on the libration of the critical resonant angles. We find strong evidence for a two-body resonance in each system; we confirm a 3:2 resonance between Kepler-226c and Kepler-226d, confirm a 3:2 resonance between Kepler-254c and Kepler-254d, and confirm a three-body 1:2:3 resonant chain between the three planets of Kepler-363. We explore the dynamical history of two of these systems and find that these resonances most likely formed without migration. Migration leads to the libration of the three-body resonant angle, but these angles circulate in both Kepler-254 and Kepler-363. Applying our methods to additional near-resonant systems could help us identify which systems are truly resonant or nonresonant and which systems require additional follow-up analysis.

     
    more » « less
  4. Abstract

    Before the launch of the Kepler Space Telescope, models of low-mass planet formation predicted that convergent type I migration would often produce systems of low-mass planets in low-order mean-motion resonances. Instead, Kepler discovered that systems of small planets frequently have period ratios larger than those associated with mean-motion resonances and rarely have period ratios smaller than those associated with mean-motion resonances. Both short-timescale processes related to the formation or early evolution of planetary systems and long-timescale secular processes have been proposed as explanations for these observations. Using a thin disk stellar population’s Galactic velocity dispersion as a relative age proxy, we find that Kepler-discovered multiple-planet systems with at least one planet pair near a period ratio suggestive of a second-order mean-motion resonance have a colder Galactic velocity dispersion and are therefore younger than both single-transiting and multiple-planet systems that lack planet pairs consistent with mean-motion resonances. We argue that a nontidal secular process with a characteristic timescale no less than a few hundred Myr is responsible for moving systems of low-mass planets away from second-order mean-motion resonances. Among systems with at least one planet pair near a period ratio suggestive of a first-order mean-motion resonance, only the population of systems likely affected by tidal dissipation inside their innermost planets has a small Galactic velocity dispersion and is therefore young. We predict that period ratios suggestive of mean-motion resonances are more common in young systems with 10 Myr ≲τ≲ 100 Myr and become less common as planetary systems age.

     
    more » « less
  5. Abstract Mechanisms have been proposed to enhance the merger rate of stellar-mass black hole binaries, such as the Von Zeipel–Lidov–Kozai mechanism (vZLK). However, high inclinations are required in order to greatly excite the eccentricity and to reduce the merger time through vZLK. Here, we propose a novel pathway through which compact binaries could merge due to eccentricity increase in general, including in a near coplanar configuration. Specifically, a compact binary migrating in an active galactic nucleus disk could be captured in an evection resonance, when the precession rate of the binary equals the orbital period around the supermassive black hole. In our study we include precession due to first-order post-Newtonian precession as well as that due to disk around one or both components of the binary. Eccentricity is excited when the binary sweeps through the resonance, which happens only when it migrates on a timescale 10–100 times the libration timescale of the resonance. Libration timescale decreases as the mass of the disk increases. The eccentricity excitation of the binary can reduce the merger timescale by up to a factor of ∼10 3−5 . 
    more » « less