skip to main content

Title: Kepler-discovered Multiple-planet Systems near Period Ratios Suggestive of Mean-motion Resonances Are Young

Before the launch of the Kepler Space Telescope, models of low-mass planet formation predicted that convergent type I migration would often produce systems of low-mass planets in low-order mean-motion resonances. Instead, Kepler discovered that systems of small planets frequently have period ratios larger than those associated with mean-motion resonances and rarely have period ratios smaller than those associated with mean-motion resonances. Both short-timescale processes related to the formation or early evolution of planetary systems and long-timescale secular processes have been proposed as explanations for these observations. Using a thin disk stellar population’s Galactic velocity dispersion as a relative age proxy, we find that Kepler-discovered multiple-planet systems with at least one planet pair near a period ratio suggestive of a second-order mean-motion resonance have a colder Galactic velocity dispersion and are therefore younger than both single-transiting and multiple-planet systems that lack planet pairs consistent with mean-motion resonances. We argue that a nontidal secular process with a characteristic timescale no less than a few hundred Myr is responsible for moving systems of low-mass planets away from second-order mean-motion resonances. Among systems with at least one planet pair near a period ratio suggestive of a first-order mean-motion resonance, only the population of systems likely affected by tidal dissipation inside their innermost planets has a small Galactic velocity dispersion and is therefore young. We predict that period ratios suggestive of mean-motion resonances are more common in young systems with 10 Myr ≲τ≲ 100 Myr and become less common as planetary systems age.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Medium: X Size: Article No. 55
Article No. 55
Sponsoring Org:
National Science Foundation
More Like this

    Diversity in the properties of exoplanetary systems arises, in part, from dynamical evolution that occurs after planet formation. We use numerical integrations to explore the relative role of secular and resonant dynamics in the long-term evolution of model planetary systems, made up of three equal mass giant planets on initially eccentric orbits. The range of separations studied is dominated by secular processes, but intersects chains of high-order mean-motion resonances. Over time-scales of 108 orbits, the secular evolution of the simulated systems is predominantly regular. High-order resonant chains, however, can be a significant source of angular momentum deficit (AMD), leading to instability. Using a time series analysis based on a Hilbert transform, we associate instability with broad islands of chaotic evolution. Previous work has suggested that first-order resonances could modify the AMD of nominally secular systems and facilitate secular chaos. We find that higher order resonances, when present in chains, can have similar impacts.

    more » « less
  2. Abstract

    Young planets provide a window into the early stages and evolution of planetary systems. Ideal planets for such research are in coeval associations, where the parent population can precisely determine their ages. We describe a young association (MELANGE-3) in the Kepler field, which harbors two transiting planetary systems (KOI-3876 and Kepler-970). We identify MELANGE-3 by searching for kinematic and spatial overdensities around Kepler planet hosts with high levels of lithium. To determine the age and membership of MELANGE-3, we combine new high-resolution spectra with archival light curves, velocities, and astrometry of stars near KOI-3876 spatially and kinematically. We use the resulting rotation sequence, lithium levels, and color–magnitude diagram of candidate members to confirm the presence of a coeval 105 ± 10 Myr population. MELANGE-3 may be part of the recently identified Theia 316 stream. For the two exoplanet systems, we revise the stellar and planetary parameters, taking into account the newly determined age. Fitting the 4.5 yr Kepler light curves, we find that KOI-3876b is a 2.0 ± 0.1Rplanet on a 19.58 day orbit, while Kepler-970 b is a 2.8 ± 0.2Rplanet on a 16.73 day orbit. KOI-3876 was previously flagged as an eclipsing binary, which we rule out using radial velocities from APOGEE and statistically validate the signal as planetary in origin. Given its overlap with the Kepler field, MELANGE-3 is valuable for studies of spot evolution on year timescales, and both planets contribute to the growing work on transiting planets in young stellar associations.

    more » « less
  3. Aims. With the aim of finding short-term planetary signals, we investigated the data collected from current high-cadence microlensing surveys. Methods. From this investigation, we found four planetary systems with low planet-to-host mass ratios, including OGLE-2017-BLG-1691L, KMT-2021-BLG-0320L, KMT-2021-BLG-1303L, and KMT-2021-BLG-1554L. Despite the short durations, ranging from a few hours to a couple of days, the planetary signals were clearly detected by the combined data of the lensing surveys. We found that three of the planetary systems have mass ratios on the order of 10 −4 and the other has a mass ratio that is slightly greater than 10 −3 . Results. The estimated masses indicate that all discovered planets have sub-Jovian masses. The planet masses of KMT-2021-BLG-0320Lb, KMT-2021-BLG-1303Lb, and KMT-2021-BLG-1554Lb correspond to ~0.10, ~0.38, and ~0.12 times the mass of the Jupiter, and the mass of OGLE-2017-BLG-1691Lb corresponds to that of the Uranus. The estimated mass of the planet host KMT-2021-BLG-1554L, M host ~ 0.08 M ⊙ , corresponds to the boundary between a star and a brown dwarf. Besides this system, the host stars of the other planetary systems are low-mass stars with masses in the range of ~[0.3–0.6] M ⊙ . The discoveries of the planets fully demonstrate the capability of the current high-cadence microlensing surveys in detecting low-mass planets. 
    more » « less
  4. Abstract

    It is often assumed that the “Kepler dichotomy”—the apparent excess of planetary systems with a single detected transiting planet in the Kepler catalog—reflects an intrinsic bimodality in the mutual inclinations of planetary orbits. After conducting 600 simulations of planet formation followed by simulated Kepler observations, we instead propose that the apparent dichotomy reflects a divergence in the amount of migration and the separation of planetary semimajor axes into distinct “clusters.” We find that our simulated high-mass systems migrate rapidly, bringing more planets into orbital periods of less than 200 days. The outer planets are often caught in a migration trap—a range of planet masses and locations in which a dominant corotation torque prevents inward migration—which splits the system into two clusters. If clusters are sufficiently separated, the inner cluster remains dynamically cold, leading to low mutual inclinations and a higher probability of detecting multiple transiting planets. Conversely, our simulated low-mass systems typically bring fewer planets within 200 days, forming a single cluster that quickly becomes dynamically unstable, leading to collisions and high mutual inclinations. We propose an alternative explanation for the apparent Kepler dichotomy in which migration traps during formation lead to fewer planets within the Kepler detection window, and where mutual inclinations play only a secondary role. If our scenario is correct, then Kepler’s Systems with Tightly packed Inner Planets are a sample of planets that escaped capture by corotation traps, and their sizes may be a valuable probe into the structure of protoplanetary disks.

    more » « less
  5. ABSTRACT We present K2-2016-BLG-0005Lb, a densely sampled, planetary binary caustic-crossing microlensing event found from a blind search of data gathered from Campaign 9 of the Kepler K2 mission (K2C9). K2-2016-BLG-0005Lb is the first bound microlensing exoplanet discovered from space-based data. The event has caustic entry and exit points that are resolved in the K2C9 data, enabling the lens-source relative proper motion to be measured. We have fitted a binary microlens model to the Kepler data and to simultaneous observations from multiple ground-based surveys. Whilst the ground-based data only sparsely sample the binary caustic, they provide a clear detection of parallax that allows us to break completely the microlensing mass-position-velocity degeneracy and measure the planet’s mass directly. We find a host mass of 0.58 ± 0.04 M⊙ and a planetary mass of 1.1 ± 0.1 MJ. The system lies at a distance of 5.2 ± 0.2 kpc from Earth towards the Galactic bulge, more than twice the distance of the previous most distant planet found by Kepler. The sky-projected separation of the planet from its host is found to be 4.2 ± 0.3 au which, for circular orbits, deprojects to a host separation $a = 4.4^{+1.9}_{-0.4}$ au and orbital period $P = 13^{+9}_{-2}$ yr. This makes K2-2016-BLG-0005Lb a close Jupiter analogue orbiting a low-mass host star. According to current planet formation models, this system is very close to the host mass threshold below which Jupiters are not expected to form. Upcoming space-based exoplanet microlensing surveys by NASA’s Nancy Grace Roman Space Telescope and, possibly, ESA’s Euclid mission, will provide demanding tests of current planet formation models. 
    more » « less