Abstract The exploration of quantum materials in which an applied thermo/electrical/magnetic field along one crystallographic direction produces an anisotropic response has led to unique functionalities. Along these lines, KMgBi is a layered, narrow gap semiconductor near a critical state between multiple Dirac phases due to the presence of a flat band near the Fermi level. The valence band is highly anisotropic with minimal cross‐plane dispersion, which, in combination with an isotropic conduction band, enables axis‐dependent conduction polarity. Thermopower and Hall measurements indicate dominant p‐type conduction along the cross‐plane direction, and n‐type conduction along the in‐plane direction, leading to a significant zero‐field transverse thermoelectric response when the heat flux is at an angle to the principal crystallographic directions. Additionally, a large Ordinary Nernst effect (ONE) is observed with an applied field. It arises from the ambipolar term in the Nernst effect, whereby the Lorentz force on electrons and holes makes them drift in opposite directions so that the resulting Nernst voltage becomes a function of the difference between their partial thermopowers, greatly enhancing the ONE. It is proven that axis‐dependent polarity can synergistically enhance the ONE, in addition to leading to a zero‐field transverse thermoelectric performance.
more »
« less
Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet
The transverse voltage generated by a temperature gradient in a perpendicularly applied magnetic field, termed the Nernst effect, has promise for thermoelectric applications and for probing electronic structure. In magnetic materials, an anomalous Nernst effect (ANE) is possible in a zero magnetic field. We report a colossal ANE in the ferromagnetic metal UCo 0.8 Ru 0.2 Al, reaching 23 microvolts per kelvin. Uranium’s 5 f electrons provide strong electronic correlations that lead to narrow bands, a known route to producing a large thermoelectric response. In addition, uranium’s strong spin-orbit coupling produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that in UCo 0.8 Ru 0.2 Al at least 148 Weyl nodes, and two nodal lines, exist within 60 millielectron volt of the Fermi level. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature.
more »
« less
- Award ID(s):
- 1832728
- PAR ID:
- 10232463
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 13
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabf1467
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Iron rhodium (FeRh) undergoes a first‐order anti‐ferromagnetic to ferromagnetic phase transition above its Curie temperature. By measuring the anomalous Nernst effect (ANE) in (110)‐oriented FeRh films on Al2O3substrates, the ANE thermopower over a temperature range of 100–350 K is observed, with similar magnetic transport behaviors observed for in‐plane magnetization (IM) and out‐of‐plane magnetization (PM) configurations. The temperature‐dependent magnetization–magnetic field strength (M–H) curves revealed that the ANE voltage is proportional to the magnetization of the material, but additional features magnetic textures not shown in the M‐H curves remained intractable. In particular, a sign reversal occurred for the ANE thermopower signal near zero field in the mixed‐magnetic‐phase films at low temperatures, which is attributed to the diamagnetic properties of the Al2O3substrate. Finite element method simulations associated with the Heisenberg spin model and Landau–Lifshitz–Gilbert equation strongly supported the abnormal heat transport behavior from the Al2O3substrate during the experimentally observed magnetic phase transition for the IM and PM configurations. The results demonstrate that FeRh films on an Al2O3substrate exhibit unusual behavior compared to other ferromagnetic materials, indicating their potential for use in novel applications associated with practical spintronics device design, neuromorphic computing, and magnetic memory.more » « less
-
Abstract Searching for Kagome magnets with novel magnetic and electronic properties has been attracting significant efforts recently. Here, the magnetic, electronic, and thermoelectric properties of Fe3Ge single crystals with Fe atoms forming a slightly distorted Kagome lattice are reported. It is shown that Fe3Ge exhibits a large anomalous Hall effect and anomalous Nernst effect. The observed anomalous transverse thermoelectric conductivity reaches ≈4.6 A m−1 K−1, which is larger than the conventional ferromagnets and most of the topological ferromagnets reported in literature. The first‐principles calculations suggest that these exceptional transport properties are dominated by the intrinsic mechanism, which highlights the significant contribution of the Berry curvature of massive Dirac gaps in the momentum space. Additionally, a topological Hall resistivity of 0.9 µΩ cm and a topological Nernst coefficient of 1.2 µV K−1are also observed, which are presumably ascribed to the Berry phase associated with the field‐induced non‐zero scalar spin chirality. These features highlight the synergic effects of the Berry phases in both momentum space and real space of Fe3Ge, which render it an excellent candidate for room‐temperature thermoelectric applications based on transverse transport.more » « less
-
Abstract The Nernst effect, the generation of a tranverse electric voltage in the presence of longitudinal thermal gradient, has garnered significant attention in the realm of magnetic topological materials due to its superior potential for thermoelectric applications. In this work, the electronic and thermoelectric transport properties of a Kagome magnet ErMn6Sn6are investigated, a compound showing an incommensurate antiferromagnetic phase followed by a ferrimagnetic phase transition upon cooling. It is shown that in the antiferromagnetic phase ErMn6Sn6exhibits both topological Nernst effect and anomalous Nernst effect, analogous to the electric Hall effects, with the Nernst coefficient reaching 1.71 µV K⁻¹ at 300 K and 3 T. This value surpasses that of most of previously reported state‐of‐the‐art canted antiferromagnetic materials and is comparable to recently reported other members of RMn6Sn6(R = rare‐earth, Y, Lu, Sc) compounds, which makes ErMn6Sn6a promising candidate for advancing the development of Nernst effect‐based thermoelectric devices.more » « less
-
Solid-state thermomagnetic modules operating based on the Nernst–Ettingshausen effects are an alternative to conventional solid-state thermoelectric modules. These modules are appropriate for low-temperature applications where the thermoelectric modules are not efficient. Here, we briefly discuss the application, performance, similarities, and differences of thermoelectric and thermomagnetic materials and modules. We review thermomagnetic module design, Nernst coefficient measurement techniques, and theoretical advances, emphasizing the Nernst effect and factors influencing its response in semimetals such as carrier compensation, Fermi surface, mobility, phonon drag, and Berry curvature. The main objective is to summarize the materials design criteria to achieve high thermomagnetic performance to accelerate thermomagnetic materials discovery.more » « less
An official website of the United States government

