skip to main content


Title: Isolation of Cancer-Derived Exosomes Using a Variety of Magnetic Nanostructures: From Fe3O4 Nanoparticles to Ni Nanowires
Isolating and analyzing tumor-derived exosomes (TEX) can provide important information about the state of a tumor, facilitating early diagnosis and prognosis. Since current isolation methods are mostly laborious and expensive, we propose herein a fast and cost-effective method based on a magnetic nanoplatform to isolate TEX. In this work, we have tested our method using three magnetic nanostructures: (i) Ni magnetic nanowires (MNWs) (1500 × 40 nm), (ii) Fe3O4 nanorods (NRs) (41 × 7 nm), and (iii) Fe3O4 cube-octahedral magnetosomes (MGs) (45 nm) obtained from magnetotactic bacteria. The magnetic response of these nanostructures has been characterized, and we have followed their internalization inside canine osteosarcoma OSCA-8 cells. An overall depiction has been obtained using a combination of Fluorescence and Scanning Electron Microscopies. In addition, Transmission Electron Microscopy images have shown that the nanostructures, with different signs of degradation, ended up being incorporated in endosomal compartments inside the cells. Small intra-endosomal vesicles that could be precursors for TEX have also been identified. Finally, TEX have been isolated using our magnetic isolation method and analyzed with a Nanoparticle tracking analyzer (NanoSight). We observed that the amount and purity of TEX isolated magnetically with MNWs was higher than with NRs and MGs, and they were close to the results obtained using conventional non-magnetic isolation methods.  more » « less
Award ID(s):
1762884
NSF-PAR ID:
10232476
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
10
Issue:
9
ISSN:
2079-4991
Page Range / eLocation ID:
1662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Exosomes, a subset of extracellular vesicles (EVs, 30–200‐nm diameter), serve as biomolecular snapshots of their cell of origin and vehicles for intercellular communication, playing roles in biological processes, including homeostasis maintenance and immune modulation. The large‐scale processing of exosomes for use as therapeutic vectors has been proposed, but these applications are limited by impure, low‐yield recoveries from cell culture milieu (CCM). Current isolation methods are also limited by tedious and laborious workflows, especially toward an isolation of EVs from CCM for therapeutic applications. Employed is a rapid (<10 min) EV isolation method on a capillary‐channeled polymer fiber spin‐down tip format. EVs are isolated from the CCM of suspension‐adapted human embryonic kidney cells (HEK293), one of the candidate cell lines for commercial EV production. This batch solid‐phase extraction technique allows 1012EVs to be obtained from only 100‐µl aliquots of milieu, processed using a benchtop centrifuge. The tip‐isolated EVs were characterized using transmission electron microscopy, multi‐angle light scattering, absorbance quantification, an enzyme‐linked immunosorbent assay to tetraspanin marker proteins, and a protein purity assay. It is believed that the demonstrated approach has immediate relevance in research and analytical laboratories, with opportunities for production‐level scale‐up projected.

     
    more » « less
  2. null (Ed.)
    Magnetotactic bacteria (MTB) biomineralize intracellular magnetite (Fe3O4) crystals surrounded by a magnetosome membrane (MM). The MM contains membrane-specific proteins that control Fe3O4 mineralization in MTB. Previous studies have demonstrated that Mms13 is a critical protein within the MM. Mms13 can be isolated from the MM fraction of Magnetospirillum magneticum AMB-1 and a Mms13 homolog, MamC, has been shown to control the size and shape of magnetite nanocrystals synthesized in-vitro. The objective of this study was to use several independent methods to definitively determine the localization of native Mms13 in M. magneticum AMB-1. Using Mms13-immunogold labeling and transmission electron microscopy (TEM), we found that Mms13 is localized to the magnetosome chain of M. magneticum AMB-1 cells. Mms13 was detected in direct contact with magnetite crystals or within the MM. Immunofluorescence detection of Mms13 in M. magneticum AMB-1 cells by confocal laser scanning microscopy (CLSM) showed Mms13 localization along the length of the magnetosome chain. Proteins contained within the MM were resolved by SDS-PAGE for Western blot analysis and LC-MS/MS (liquid chromatography with tandem mass spectrometry) protein sequencing. Using Anti-Mms13 antibody, a protein band with a molecular mass of ~14 kDa was detected in the MM fraction only. This polypeptide was digested with trypsin, sequenced by LC-MS/MS and identified as magnetosome protein Mms13. Peptides corresponding to the protein’s putative MM domain and catalytic domain were both identified by LC-MS/MS. Our results (Immunogold TEM, Immunofluorescence CLSM, Western blot, LC-MS/MS), combined with results from previous studies, demonstrate that Mms13 and homolog proteins MamC and Mam12, are localized to the magnetosome chain in MTB belonging to the class Alphaproteobacteria. Because of their shared localization in the MM and highly conserved amino acid sequences, it is likely that MamC, Mam12, and Mms13 share similar roles in the biomineralization of Fe3O4 nanocrystals. 
    more » « less
  3. Abstract

    Exosomes are 50‐ to 150‐nm‐diameter extracellular vesicles secreted by all mammalian cells except mature red blood cells and contribute to diverse physiological and pathological functions within the body. Many methods have been used to isolate and analyze exosomes, resulting in inconsistencies across experiments and raising questions about how to compare results obtained using different approaches. Questions have also been raised regarding the purity of the various preparations with regard to the sizes and types of vesicles and to the presence of lipoproteins. Thus, investigators often find it challenging to identify the optimal exosome isolation protocol for their experimental needs. Our laboratories have compared ultracentrifugation and commercial precipitation‐ and column‐based exosome isolation kits for exosome preparation. Here, we present protocols for exosome isolation using two of the most commonly used methods, ultracentrifugation and precipitation, followed by downstream analyses. We use NanoSight nanoparticle tracking analysis and flow cytometry (Cytek®) to determine exosome concentrations and sizes. Imaging flow cytometry can be utilized to both size exosomes and immunophenotype surface markers on exosomes (ImageStream®). High‐performance liquid chromatography followed by nano‐flow liquid chromatography–mass spectrometry (LCMS) of the exosome fractions can be used to determine the presence of lipoproteins, with LCMS able to provide a proteomic profile of the exosome preparations. We found that the precipitation method was six times faster and resulted in a ∼2.5‐fold higher concentration of exosomes per milliliter compared to ultracentrifugation. Both methods yielded extracellular vesicles in the size range of exosomes, and both preparations included apoproteins. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Pre‐analytic fluid collection and processing

    Basic Protocol 2: Exosome isolation by ultracentrifugation

    Alternate Protocol 1: Exosome isolation by precipitation

    Basic Protocol 3: Analysis of exosomes by NanoSight nanoparticle tracking analysis

    Alternate Protocol 2: Analysis of exosomes by flow cytometry and imaging flow cytometry

    Basic Protocol 4: Downstream analysis of exosomes using high‐performance liquid chromatography

    Basic Protocol 5: Downstream analysis of the exosome proteome using nano‐flow liquid chromatography–mass spectrometry

     
    more » « less
  4. Tumor stiffness has been associated with malignancy and increased risk for metastasis. Extensive research has been done investigating breast cancer cell lines’ responsiveness to surfaces of varying rigidities as well as examining the biophysical properties of breast cancer tumor samples. However, there is a critical gap regarding the relationship between cells’ mechanosensitivity in conjunction to biophysical properties of their extracellular matrix environment. To explore this relationship, we will analyze single-cell mechanosensitivity in comparison to tumor rigidity via shearwave ultrasound elastogrophy (SWE). Given the putative affiliation, we hypothesize that cells expressing invasive mechanosensitivity profiles will correlate with stiffer tumor regions. Using collagen gels containing different cell types, we derived biopsy-sized samples allowing us to optimize single-cell mechanosensitivity analysis. Cells were stained using different dyes corresponding to invasiveness. Subsequently, we analyzed their morphology. Morphological identification within organoid environments would allow for single-cell analysis without the aggression of tissue digestion, though preliminary results suggest high heterogeneity may not allow for confident cell identification solely on morphology. Thus, inquisition into cell viability and integrity was explored by analyzing the effects of tissue digestion with HyQtase on single-cells. Cell count and live-dead stain via flow cytometry allowed for analysis of single-cell viability. Lastly, cell integrity was evaluated by a 2D adhesion assay of isolated cells. The live/dead stain revealed that digestion resulted in isolation of approximately 10% of the original 500,000 cell population with 90–97% of the isolated population being live-cells (invasive and non-invasive respectively). Furthermore, the adhesion assay showed that these isolated single cells retained the ability to adhere to new surfaces, with no difference between the invasive and non-invasive cell types. These results show that cells are able to retain mechanosensitive properties following enzymatic digestion. However, they also suggest our digestion procedure is not aggressive enough to isolate invasive subpopulations that are more strongly imbedded in the original tissues. Development of these novel techniques will allow for accurate and confident analysis of precious human biopsy samples. Insight into the relationship between single-cell mechanosensitivity and tumor biophysical properties could elucidate pathways for metastasis inhibition and prevention. 
    more » « less
  5. Abstract

    Extracellular vesicles (EVs) – nanoscale membranous particles that carry multiple proteins and nucleic acid cargoes from their mother cells of origin into circulation – have enormous potential as biomarkers. However, devices appropriately scaled to the nanoscale to match the size of EVs (30–200 nm) have orders of magnitude too low throughput to process clinical samples (1012EVs mL−1in serum). To address this challenge, we develop a novel approach that incorporates billions of nanomagnetic sorters that act in parallel to precisely isolate sparse EVs based on immunomagnetic labeling directly from clinical samples at flow rates billions of times greater than that of a single nanofluidic device. To fabricate these chips, the ferromagnetic metals are electro‐deposited into a self‐assembled microlattice, achieving >109nanoscale magnetophoretic sorting devices in a 3D postage stamp‐sized lattice with >70x magnetic traps and >20x enrichment of magnetic nanoparticles versus our previous work. The immunomagnetically labeled EVs are isolated and achieve a ≈100% increase in yield as well as increased purity compared to conventional methods. Building on the proof‐of‐concept demonstrations in this manuscript, this new approach has the potential to enhance the future clinical translation of EV biomarkers by enabling rapid, sensitive, and specific isolation of EV subpopulations from clinical samples.

     
    more » « less