skip to main content


Title: Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences
Award ID(s):
1953299
NSF-PAR ID:
10232595
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
3
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the origins and maintenance of host specificity, or why horizontally‐acquired symbionts associate with some hosts but not others, remains elusive. In this study, we explored whether patterns of host specificity in foliar fungal endophytes, a guild of highly diverse fungi that occur within the photosynthetic tissues of all major plant lineages, were related to characteristics of the plant community. We comprehensively sampled all plant host species within a single community and tested the relationship between plant abundance or plant evolutionary relatedness and metrics of endophyte host specificity. We quantified host specificity with methods that considered the total endophyte community per plant host (i.e., multivariate methods) along with species‐based methods (i.e., univariate metrics) that considered host specificity from the perspective of each endophyte. Univariate host specificity metrics quantified plant alpha‐diversity (structural specificity), plant beta‐diversity (beta‐specificity), and plant phylogenetic diversity (phylogenetic specificity) per endophyte. We standardized the effect sizes of univariate host specificity metrics to randomized distributions to avoid spurious correlations between host specificity metrics and endophyte abundance. We found that more abundant plant species harbored endophytes that occupied fewer plant species (higher structural specificity) and were consistently found in the same plant species across the landscape (higher beta‐specificity). There was no relationship between plant phylogenetic distance and endophyte community dissimilarity. We still found that endophyte community composition significantly varied among plant species, families, and major groups, supporting a plant identity effect. In particular, endophytes in angiosperm lineages associated with narrower phylogenetic breadths of plants (higher phylogenetic specificity) compared to endophytes within conifer and fern lineages. Overall, an effect of plant species abundance may help explain why horizontally‐transmitted endophytes vary geographically within host species ranges.

     
    more » « less
  2. Despite colonizing nearly every plant on Earth, foliar fungal symbionts have received little attention in studies on the biogeography of host-associated microbes. Evidence from regional scale studies suggests that foliar fungal symbiont distributions are influenced both by plant hosts and environmental variation in climate and soil resources. However, previous surveys have focused on either one plant host across an environmental gradient or one gradient and multiple plant hosts, making it difficult to disentangle the influence of host identity from the influence of the environment on foliar endophyte communities. We used a culture-based approach to survey fungal symbiont composition in the leaves of nine C3 grass species along replicated elevation gradients in grasslands of the Colorado Rocky Mountains. In these ecosystems, the taxonomic richness and composition of foliar fungal symbionts were mostly structured by the taxonomic identity of the plant host rather than by variation in climate. Plant traits related to size (height and leaf length) were the best predictors of foliar fungal symbiont composition and diversity, and composition did not vary predictably with plant evolutionary history. The largest plants had the most diverse and distinctive fungal communities. These results suggest that across the ~ 300 m elevation range that we sampled, foliar fungal symbionts may indirectly experience climate change by tracking the shifting distributions of plant hosts rather than tracking climate directly. 
    more » « less
  3. Abstract

    The mechanisms causing invasive species impact are rarely empirically tested, limiting our ability to understand and predict subsequent changes in invaded plant communities. Invader disruption of native mutualistic interactions is a mechanism expected to have negative effects on native plant species. Specifically, disruption of native plant‐fungal mutualisms may provide non‐mycorrhizal plant invaders an advantage over mycorrhizal native plants. InvasiveAlliaria petiolata(garlic mustard) produces secondary chemicals toxic to soil microorganisms including mycorrhizal fungi, and is known to induce physiological stress and reduce population growth rates of native forest understory plant species. Here, we report on a 11‐yr manipulative field experiment in replicated forest plots testing if the effects of removal of garlic mustard on the plant community support the mutualism disruption hypothesis within the entire understory herbaceous community. We compare community responses for two functional groups: the mycorrhizal vs. the non‐mycorrhizal plant communities. Our results show that garlic mustard weeding alters the community composition, decreases community evenness, and increases the abundance of understory herbs that associate with mycorrhizal fungi. Conversely, garlic mustard has no significant effects on the non‐mycorrhizal plant community. Consistent with the mutualism disruption hypothesis, our results demonstrate that allelochemical producing invaders modify the plant community by disproportionately impacting mycorrhizal plant species. We also demonstrate the importance of incorporating causal mechanisms of biological invasion to elucidate patterns and predict community‐level responses.

     
    more » « less