Abstract Caffeine is a natural compound that inhibits the major cellular signaling regulator target of rapamycin (TOR), leading to widespread effects including growth inhibition. Saccharomyces cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors Pdr1, Pdr3, and Yrr1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors Sit4, Sky1, and Tip41 and showed that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.
more »
« less
Genetic variation in aneuploidy prevalence and tolerance across Saccharomyces cerevisiae lineages
Abstract Individuals carrying an aberrant number of chromosomes can vary widely in their expression of aneuploidy phenotypes. A major unanswered question is the degree to which an individual’s genetic makeup influences its tolerance of karyotypic imbalance. Here we investigated within-species variation in aneuploidy prevalence and tolerance, using Saccharomyces cerevisiae as a model for eukaryotic biology. We analyzed genotypic and phenotypic variation recently published for over 1,000 S. cerevisiae strains spanning dozens of genetically defined clades and ecological associations. Our results show that the prevalence of chromosome gain and loss varies by clade and can be better explained by differences in genetic background than ecology. The relationships between lineages with high aneuploidy frequencies suggest that increased aneuploidy prevalence emerged multiple times in S. cerevisiae evolution. Separate from aneuploidy prevalence, analyzing growth phenotypes revealed that some genetic backgrounds—such as the European Wine lineage—show fitness costs in aneuploids compared to euploids, whereas other clades with high aneuploidy frequencies show little evidence of major deleterious effects. Our analysis confirms that chromosome gain can produce phenotypic benefits, which could influence evolutionary trajectories. These results have important implications for understanding genetic variation in aneuploidy prevalence in health, disease, and evolution.
more »
« less
- Award ID(s):
- 1946046
- PAR ID:
- 10232615
- Editor(s):
- Hahn, M
- Date Published:
- Journal Name:
- Genetics
- Volume:
- 217
- Issue:
- 4
- ISSN:
- 1943-2631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Experimental evolution allows the observation of change over time as laboratory populations evolve in response to novel, controlled environments. Microbial evolution experiments take advantage of cryopreservation to archive experimental populations in glycerol media, creating a frozen, living “fossil” record. Prior research with Escherichia coli has shown that cryopreservation conditions can affect cell viability and that allele frequencies across the genome can change in response to a freeze-thaw event. We expand on these observations by characterizing fitness and genomic consequences of multiple freeze-thaw cycles in diploid yeast populations. Our study system is a highly recombinant Saccharomyces cerevisiae population (SGRP-4X) which harbors standing genetic variation that cryopreservation may threaten. We also investigate the four parental isogenic strains crossed to create the SGRP-4X. We measure cell viability over 5 consecutive freeze-thaw cycles; while we find that viability increases over time in the evolved recombinant populations, we observe no such viability improvements in the parental strains. We also collect genome-wide sequence data from experimental populations initially, after one freeze-thaw, and after five freeze-thaw cycles. In the recombinant evolved populations, we find a region of significant allele frequency change on chromosome 15 containing the ALR1 gene. In the parental strains, we find little evidence for new mutations. We conclude that cryopreserving yeast populations with standing genetic variation may have both phenotypic and genomic consequences, though these same cryopreservation practices may have only small impacts on populations with little or no initial variation.more » « less
-
Organismal development is a complex process, involving a vast number of molecular constituents interacting on multiple spatio-temporal scales in the formation of intricate body structures. Despite this complexity, development is remarkably reproducible and displays tolerance to both genetic and environmental perturbations. This robustness implies the existence of hidden simplicities in developmental programs. Here, using the Drosophila wing as a model system, we develop a new quantitative strategy that enables a robust description of biologically salient phenotypic variation. Analyzing natural phenotypic variation across a highly outbred population and variation generated by weak perturbations in genetic and environmental conditions, we observe a highly constrained set of wing phenotypes. Remarkably, the phenotypic variants can be described by a single integrated mode that corresponds to a non-intuitive combination of structural variations across the wing. This work demonstrates the presence of constraints that funnel environmental inputs and genetic variation into phenotypes stretched along a single axis in morphological space. Our results provide quantitative insights into the nature of robustness in complex forms while yet accommodating the potential for evolutionary variations. Methodologically, we introduce a general strategy for finding such invariances in other developmental contexts.more » « less
-
null (Ed.)Organisms experience variation in the thermal environment on several different temporal scales, with seasonality being particularly prominent in temperate regions. For organisms with short generation times, seasonal variation is experienced across, rather than within, generations. How this affects the seasonal evolution of thermal tolerance and phenotypic plasticity is understudied, but has direct implications for the thermal ecology of these organisms. Here we document intra-annual patterns of thermal tolerance in two species of Acartia copepods (Crustacea) from a highly seasonal estuary, showing strong variation across the annual temperature cycle. Common garden, split-brood experiments indicate that this seasonal variation in thermal tolerance, along with seasonal variation in body size and phenotypic plasticity, is likely affected by genetic polymorphism. Our results show that adaptation to seasonal variation is important to consider when predicting how populations may respond to ongoing climate change.more » « less
-
Whiteman, N (Ed.)Abstract Probiotic yeasts are emerging as preventative and therapeutic solutions for disease. Often ingested via cultured foods and beverages, they can survive the harsh conditions of the gastrointestinal tract and adhere to it, where they provide nutrients and inhibit pathogens like Candida albicans. Yet, little is known of the genomic determinants of these beneficial traits. To this end, we have sequenced 2 food-derived probiotic yeast isolates that mitigate fungal infections. We find that the first strain, KTP, is a strain of Saccharomyces cerevisiae within a small clade that lacks any apparent ancestry from common European/wine S. cerevisiae strains. Significantly, we show that S. cerevisiae KTP genes involved in general stress, pH tolerance, and adherence are markedly different from S. cerevisiae S288C but are similar to the commercial probiotic yeast species S. boulardii. This suggests that even though S. cerevisiae KTP and S. boulardii are from different clades, they may achieve probiotic effect through similar genetic mechanisms. We find that the second strain, ApC, is a strain of Issatchenkia occidentalis, one of the few of this family of yeasts to be sequenced. Because of the dissimilarity of its genome structure and gene organization, we infer that I. occidentalis ApC likely achieves a probiotic effect through a different mechanism than the Saccharomyces strains. Therefore, this work establishes a strong genetic link among probiotic Saccharomycetes, advances the genomics of Issatchenkia yeasts, and indicates that probiotic activity is not monophyletic and complimentary mixtures of probiotics could enhance health benefits beyond a single species.more » « less
An official website of the United States government

