skip to main content

Title: Ubiquitous Molecular Outflows in z > 4 Massive, Dusty Galaxies. I. Sample Overview and Clumpy Structure in Molecular Outflows on 500 pc Scales
Award ID(s):
1852617 1715213 1716127
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract We adopt the deep learning method casi-3d (Convolutional Approach to Structure Identification-3D) to systemically identify protostellar outflows in 12 CO and 13 CO observations of the nearby molecular clouds, Ophiuchus, Taurus, Perseus, and Orion. The total outflow masses are 267 M ⊙ , 795 M ⊙ , 1305 M ⊙ , and 6332 M ⊙ for Ophiuchus, Taurus, Perseus, and Orion, respectively. We show the outflow mass in each cloud is linearly proportional to the total number of young stellar objects. The estimated total 3D deprojected outflow energies are 9 × 10 45 erg, 6 × 10 46 erg, 1.2 × 10 47 erg, and 6 × 10 47 erg for Ophiuchus, Taurus, Perseus, and Orion, respectively. The energy associated with outflows is sufficient to offset turbulent dissipation at the current epoch for all four clouds. All clouds also exhibit a break point in the spatial power spectrum of the outflow prediction map, which likely corresponds to the typical outflow mass and energy injection scale. 
    more » « less
  3. ABSTRACT We present the hot molecular and warm ionized gas kinematics for 33 nearby (0.001 ≲ z ≲ 0.056) X-ray selected active galaxies using the H$_2\, 2.1218\, \mu$m and Br γ emission lines observed in the K band with the Gemini near-infrared integral field spectrograph. The observations cover the inner 0.04–2 kpc of each active galactic nucleus at spatial resolutions of 4–250 pc with a velocity resolution of σinst ≈ 20 ${\rm km\, s^{-1}}$. We find that 31 objects (94 per cent) present a kinematically disturbed region (KDR) seen in ionized gas, while such regions are observed in hot molecular gas for 25 galaxies (76 per cent). We interpret the KDR as being due to outflows with masses of 102–107 and 100–104 M⊙ for the ionized and hot molecular gas, respectively. The ranges of mass-outflow rates ($\dot{M}_{\rm out}$) and kinetic power ($\dot{E}_{\rm K}$) of the outflows are 10−3–101 M⊙ yr−1 and ∼1037–1043 erg s−1 for the ionized gas outflows, and 10−5–10−2 M⊙ yr−1 and 1035–1039 erg s−1 for the hot molecular gas outflows. The median coupling efficiency in our sample is $\dot{E}_{\mathrm{K}}/L_{\rm bol}\approx 1.8\times 10^{-3}$ and the estimated momentum fluxes of the outflows suggest they are produced by radiation-pressure in low-density environment, with possible contribution from shocks. 
    more » « less
  4. We report molecular gas observations of IRAS 20100-4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using ALMA and PdBI observations, we spatially resolve the CO(1-0) emission from the outflowing molecular gas in both and find maximum outflow velocities of $ v_{\rm max} \sim 1600$ and $\sim 1700$ km/s for IRAS 20100-4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of $\dot M_{\rm OF} \sim 670$ and $\sim 350$ Msun/yr, respectively, corresponding to molecular gas depletion timescales $\tau^{\rm dep}_{\rm OF} \sim 11$ and $\sim 16$ Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, $\tau^{\rm dep}_{\rm SFR} \sim 33$ and $\sim 46$ Myr, respectively. To determine the outflow driving mechanism, we compare the starburst ($L_{*}$) and AGN ($L_{\rm AGN}$) luminosities to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern $L_{\rm AGN}$. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with $L_{*}$ and $L_{\rm IR}$ as with $L_{\rm AGN}$, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst activity may be driving the most powerful molecular outflows. We also detect the OH 1.667 GHz maser line from both sources and demonstrate its utility in detecting molecular outflows. 
    more » « less