skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magneto-rotational instability in magnetically polarized discs
Abstract The magneto-rotational instability (MRI) is the most likely mechanism for transportation of angular momentum and dissipation of energy within hot, ionized accretion discs. This instability is produced through the interactions of a differentially rotating plasma with an embedded magnetic field. Like all substances in nature, the plasma in an accretion disc has the potential to become magnetically polarized when it interacts with the magnetic field. In this paper we study the effect of this magnetic susceptibility, parameterized by χm, on the MRI, specifically within the context of black hole accretion. We find from a linear analysis within the Newtonian limit that the minimum wavelength of the first unstable mode and the wavelength of the fastest growing mode are shorter in paramagnetic (χm > 0) than in diamagnetic (χm < 0) discs, all other parameters being equal. Furthermore, the magnetization parameter (ratio of gas to magnetic pressure) in the saturated state should be smaller when the magnetic susceptibility is positive than when it is negative. We confirm this latter prediction through a set of numerical simulations of magnetically polarized black hole accretion discs. We additionally find that the vertically integrated stress and mass accretion rate are somewhat larger when the disc is paramagnetic than when it is diamagnetic. If astrophysical discs are able to become magnetically polarized to any significant degree, then our results would be relevant to properly interpreting observations.  more » « less
Award ID(s):
1907850
PAR ID:
10232735
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present the results of nine simulations of radiatively inefficient magnetically arrested discs (MADs) across different values of the black hole spin parameter a*: −0.9, −0.7, −0.5, −0.3, 0, 0.3, 0.5, 0.7, and 0.9. Each simulation was run up to $$t \gtrsim 100\, 000\, GM/c^3$$ to ensure disc inflow equilibrium out to large radii. We find that the saturated magnetic flux level, and consequently also jet power, of MAD discs depends strongly on the black hole spin, confirming previous results. Prograde discs saturate at a much higher relative magnetic flux and have more powerful jets than their retrograde counterparts. MADs with spinning black holes naturally launch jets with generalized parabolic profiles whose widths vary as a power of distance from the black hole. For distances up to 100GM/c2, the power-law index is k ≈ 0.27–0.42. There is a strong correlation between the disc–jet geometry and the dimensionless magnetic flux, resulting in prograde systems displaying thinner equatorial accretion flows near the black hole and wider jets, compared to retrograde systems. Prograde and retrograde MADs also exhibit different trends in disc variability: accretion rate variability increases with increasing spin for a* > 0 and remains almost constant for a* ≲ 0, while magnetic flux variability shows the opposite trend. Jets in the MAD state remove more angular momentum from black holes than is accreted, effectively spinning down the black hole. If powerful jets from MAD systems in Nature are persistent, this loss of angular momentum will notably reduce the black hole spin over cosmic time. 
    more » « less
  2. ABSTRACT Magnetically arrested accretion discs (MADs) around black holes (BHs) have the potential to stimulate the production of powerful jets and account for recent ultra-high-resolution observations of BH environments. Their main properties are usually attributed to the accumulation of dynamically significant net magnetic (vertical) flux throughout the arrested region, which is then regulated by interchange instabilities. Here, we propose instead that it is mainly a dynamically important toroidal field – the result of dynamo action triggered by the significant but still relatively weak vertical field – that defines and regulates the properties of MADs. We suggest that rapid convection-like instabilities, involving interchange of toroidal flux tubes and operating concurrently with the magnetorotational instability (MRI), can regulate the structure of the disc and the escape of net flux. We generalize the convective stability criteria and disc structure equations to include the effects of a strong toroidal field and show that convective flows could be driven towards two distinct marginally stable states, one of which we associate with MADs. We confirm the plausibility of our theoretical model by comparing its quantitative predictions to simulations of both MAD and SANE (standard and normal evolution; strongly magnetized but not ‘arrested’) discs, and suggest a set of criteria that could help to distinguish MADs from other accretion states. Contrary to previous claims in the literature, we argue that MRI is not suppressed in MADs and is probably responsible for the existence of the strong toroidal field. 
    more » « less
  3. null (Ed.)
    ABSTRACT Luminous active galactic nuclei and X-ray binaries often contain geometrically thin, radiatively cooled accretion discs. According to theory, these are – in many cases – initially highly misaligned with the black hole equator. In this work, we present the first general relativistic magnetohydrodynamic simulations of very thin (h/r ∼ 0.015–0.05) accretion discs around rapidly spinning (a ∼ 0.9) black holes and tilted by 45°–65°. We show that the inner regions of the discs with h/r ≲ 0.03 align with the black hole equator, though out to smaller radii than predicted by analytic work. The inner aligned and outer misaligned disc regions are separated by a sharp break in tilt angle accompanied by a sharp drop in density. We find that frame dragging by the spinning black hole overpowers the disc viscosity, which is self-consistently produced by magnetized turbulence, tearing the disc apart and forming a rapidly precessing inner sub-disc surrounded by a slowly precessing outer sub-disc. We find that the system produces a pair of relativistic jets for all initial tilt values. At small distances, the black hole launched jets precess rapidly together with the inner sub-disc, whereas at large distances they partially align with the outer sub-disc and precess more slowly. If the tearing radius can be modeled accurately in future work, emission model independent measurements of black hole spin based on precession-driven quasi-periodic oscillations may become possible. 
    more » « less
  4. Abstract In certain scenarios, the accreted angular momentum of plasma onto a black hole could be low; however, how the accretion dynamics depend on the angular momentum content of the plasma is still not fully understood. We present three-dimensional, general relativistic magnetohydrodynamic simulations of low angular momentum accretion flows around rapidly spinning black holes (with spina = +0.9). The initial condition is a Fishbone–Moncrief (FM) torus threaded by a large amount of poloidal magnetic flux, where the angular velocity is a fractionfof the standard value. Forf= 0, the accretion flow becomes magnetically arrested and launches relativistic jets but only for a very short duration. After that, free-falling plasma breaks through the magnetic barrier, loading the jet with mass and destroying the jet–disk structure. Meanwhile, magnetic flux is lost via giant, asymmetrical magnetic bubbles that float away from the black hole. The accretion then exits the magnetically arrested state. Forf= 0.1, the dimensionless magnetic flux threading the black hole oscillates quasiperiodically. The jet–disk structure shows concurrent revival and destruction while the gas outflow efficiency at the event horizon changes accordingly. Forf≥ 0.3, we find that the dynamical behavior of the system starts to approach that of a standard accreting FM torus. Our results thus suggest that the accreted angular momentum is an important parameter that governs the maintenance of a magnetically arrested flow and launching of relativistic jets around black holes. 
    more » « less
  5. ABSTRACT Jetted astrophysical phenomena with black hole engines, including binary mergers, jetted tidal disruption events, and X-ray binaries, require a large-scale vertical magnetic field for efficient jet formation. However, a dynamo mechanism that could generate these crucial large-scale magnetic fields has not been identified and characterized. We have employed three-dimensional global general relativistic magnetohydrodynamical simulations of accretion discs to quantify, for the first time, a dynamo mechanism that generates large-scale magnetic fields. This dynamo mechanism primarily arises from the non-linear evolution of the magnetorotational instability (MRI). In this mechanism, large non-axisymmetric MRI-amplified shearing wave modes, mediated by the axisymmetric azimuthal magnetic field, generate and sustain the large-scale vertical magnetic field through their non-linear interactions. We identify the advection of magnetic loops as a crucial feature, transporting the large-scale vertical magnetic field from the outer regions to the inner regions of the accretion disc. This leads to a larger characteristic size of the, now advected, magnetic field when compared to the local disc height. We characterize the complete dynamo mechanism with two time-scales: one for the local magnetic field generation, $$t_{\rm gen}$$, and one for the large-scale scale advection, $$t_{\rm adv}$$. Whereas the dynamo we describe is non-linear, we explore the potential of linear mean field models to replicate its core features. Our findings indicate that traditional $$\alpha$$-dynamo models, often computed in stratified shearing box simulations, are inadequate and that the effective large-scale dynamics is better described by the shear current effects or stochastic $$\alpha$$-dynamos. 
    more » « less