ABSTRACT Type-C quasi-periodic oscillations (QPOs) are the low-frequency QPOs most commonly observed during the hard spectral state of X-ray binary systems. The leading model for these QPOs is the Lense-Thirring precession of a hot geometrically thick accretion flow that is misaligned with respect to the black hole spin axis. However, none of the work done to date has accounted for the effects of a surrounding geometrically thin disc on this precession, as would be the case in the truncated disc picture of the hard state. To address this, we perform a set of general relativistic magnetohydrodynamics simulations of truncated discs misaligned with the spin axes of their central black holes. Our results confirm that the inner-hot flow still undergoes precession, though at a rate that is only 5 per cent of what is predicted for an isolated precessing torus. We find that the exchange of angular momentum between the outer thin and the inner thick disc causes this slow-down in the precession rate and discuss its relevance to type-C QPOs.
more »
« less
Disc tearing and Bardeen–Petterson alignment in GRMHD simulations of highly tilted thin accretion discs
ABSTRACT Luminous active galactic nuclei and X-ray binaries often contain geometrically thin, radiatively cooled accretion discs. According to theory, these are – in many cases – initially highly misaligned with the black hole equator. In this work, we present the first general relativistic magnetohydrodynamic simulations of very thin (h/r ∼ 0.015–0.05) accretion discs around rapidly spinning (a ∼ 0.9) black holes and tilted by 45°–65°. We show that the inner regions of the discs with h/r ≲ 0.03 align with the black hole equator, though out to smaller radii than predicted by analytic work. The inner aligned and outer misaligned disc regions are separated by a sharp break in tilt angle accompanied by a sharp drop in density. We find that frame dragging by the spinning black hole overpowers the disc viscosity, which is self-consistently produced by magnetized turbulence, tearing the disc apart and forming a rapidly precessing inner sub-disc surrounded by a slowly precessing outer sub-disc. We find that the system produces a pair of relativistic jets for all initial tilt values. At small distances, the black hole launched jets precess rapidly together with the inner sub-disc, whereas at large distances they partially align with the outer sub-disc and precess more slowly. If the tearing radius can be modeled accurately in future work, emission model independent measurements of black hole spin based on precession-driven quasi-periodic oscillations may become possible.
more »
« less
- Award ID(s):
- 1911080
- PAR ID:
- 10292239
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 507
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 983 to 990
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We present the results of nine simulations of radiatively inefficient magnetically arrested discs (MADs) across different values of the black hole spin parameter a*: −0.9, −0.7, −0.5, −0.3, 0, 0.3, 0.5, 0.7, and 0.9. Each simulation was run up to $$t \gtrsim 100\, 000\, GM/c^3$$ to ensure disc inflow equilibrium out to large radii. We find that the saturated magnetic flux level, and consequently also jet power, of MAD discs depends strongly on the black hole spin, confirming previous results. Prograde discs saturate at a much higher relative magnetic flux and have more powerful jets than their retrograde counterparts. MADs with spinning black holes naturally launch jets with generalized parabolic profiles whose widths vary as a power of distance from the black hole. For distances up to 100GM/c2, the power-law index is k ≈ 0.27–0.42. There is a strong correlation between the disc–jet geometry and the dimensionless magnetic flux, resulting in prograde systems displaying thinner equatorial accretion flows near the black hole and wider jets, compared to retrograde systems. Prograde and retrograde MADs also exhibit different trends in disc variability: accretion rate variability increases with increasing spin for a* > 0 and remains almost constant for a* ≲ 0, while magnetic flux variability shows the opposite trend. Jets in the MAD state remove more angular momentum from black holes than is accreted, effectively spinning down the black hole. If powerful jets from MAD systems in Nature are persistent, this loss of angular momentum will notably reduce the black hole spin over cosmic time.more » « less
-
Abstract In many black hole (BH) systems, the accretion disk is expected to be misaligned with respect to the BH spin axis. If the scale height of the disk is much smaller than the misalignment angle, the spin of the BH can tear the disk into multiple, independently precessing “sub-disks.” This is most likely to happen during outbursts in black hole X-Ray binaries (BHXRBs) and in active galactic nuclei (AGNs) accreting above a few percent of the Eddington limit, because the disk becomes razor-thin. Disk tearing has the potential to explain variability phenomena including quasi-periodic oscillations in BHXRBs and changing-look phenomena in AGNs. Here, we present the first radiative two-temperature general relativistic magnetohydrodynamic (GRMHD) simulation of a strongly tilted (65°) accretion disk around anMBH= 10M⊙BH, which tears and precesses. This leads to luminosity swings between a few percent and 50% of the Eddington limit on sub-viscous timescales. Surprisingly, even where the disk is radiation-pressure-dominated, the accretion disk is thermally stable overt≳ 14,000rg/c. This suggests warps play an important role in stabilizing the disk against thermal collapse. The disk forms two nozzle shocks perpendicular to the line of nodes where the scale height of the disk decreases tenfold and the electron temperature reachesTe∼ 108–109K. In addition, optically thin gas crossing the tear between the inner and outer disk gets heated toTe∼ 108K. This suggests that warped disks may emit a Comptonized spectrum that deviates substantially from idealized models.more » « less
-
ABSTRACT Numerical general relativistic radiative magnetohydrodynamic simulations of accretion discs around a stellar-mass black hole with a luminosity above 0.5 of the Eddington value reveal their stratified, elevated vertical structure. We refer to these thermally stable numerical solutions as puffy discs. Above a dense and geometrically thin core of dimensionless thickness h/r ∼ 0.1, crudely resembling a classic thin accretion disc, a puffed-up, geometrically thick layer of lower density is formed. This puffy layer corresponds to h/r ∼ 1.0, with a very limited dependence of the dimensionless thickness on the mass accretion rate. We discuss the observational properties of puffy discs, particularly the geometrical obscuration of the inner disc by the elevated puffy region at higher observing inclinations, and collimation of the radiation along the accretion disc spin axis, which may explain the apparent super-Eddington luminosity of some X-ray objects. We also present synthetic spectra of puffy discs, and show that they are qualitatively similar to those of a Comptonized thin disc. We demonstrate that the existing xspec spectral fitting models provide good fits to synthetic observations of puffy discs, but cannot correctly recover the input black hole spin. The puffy region remains optically thick to scattering; in its spectral properties, the puffy disc roughly resembles that of a warm corona sandwiching the disc core. We suggest that puffy discs may correspond to X-ray binary systems of luminosities above 0.3 of the Eddington luminosity in the intermediate spectral states.more » « less
-
ABSTRACT We present results of global 3D magnetohydrodynamic simulations of accretion on to magnetized stars where both the magnetic and rotational axes of the star are tilted about the rotational axis of the disc. We observed that initially the inner parts of the disc are warped, tilted, and precess due to the magnetic interaction between the magnetosphere and the disc. Later, larger tilted discs form with the size increasing with the magnetic moment of the star. The normal vector to the discs are tilted at different angles, from ∼5°–10° up to ∼30°–40°. Small tilts may result from the winding of the magnetic field lines about the rotational axis of the star and the action of the magnetic force which tends to align the disc. Another possible explanation is the magnetic Bardeen–Petterson effect in which the disc settles in the equatorial plane of the star due to precessional and viscous torques in the disc. Tilted discs slowly precess with the time-scale of the order of ∼50 Keplerian periods at the reference radius (∼3 stellar radii). Our results can be applied to different types of stars where signs of tilted discs and/or slow precession have been observed.more » « less