skip to main content


Title: Drivers of Atmospheric and Oceanic Surface Temperature Variance: A Frequency Domain Approach
Abstract Ocean–atmosphere coupling modifies the variability of Earth’s climate over a wide range of time scales. However, attribution of the processes that generate this variability remains an outstanding problem. In this article, air–sea coupling is investigated in an eddy-resolving, medium-complexity, idealized ocean–atmosphere model. The model is run in three configurations: fully coupled, partially coupled (where the effect of the ocean geostrophic velocity on the sea surface temperature field is minimal), and atmosphere-only. A surface boundary layer temperature variance budget analysis computed in the frequency domain is shown to be a powerful tool for studying air–sea interactions, as it differentiates the relative contributions to the variability in the temperature field from each process across a range of time scales (from daily to multidecadal). This method compares terms in the ocean and atmosphere across the different model configurations to infer the underlying mechanisms driving temperature variability. Horizontal advection plays a dominant role in driving temperature variance in both the ocean and the atmosphere, particularly at time scales shorter than annual. At longer time scales, the temperature variance is dominated by strong coupling between atmosphere and ocean. Furthermore, the Ekman transport contribution to the ocean’s horizontal advection is found to underlie the low-frequency behavior in the atmosphere. The ocean geostrophic eddy field is an important driver of ocean variability across all frequencies and is reflected in the atmospheric variability in the western boundary current separation region at longer time scales.  more » « less
Award ID(s):
1851164
NSF-PAR ID:
10232753
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
34
Issue:
10
ISSN:
0894-8755
Page Range / eLocation ID:
3975 to 3990
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are tooredcompared to observations. Including ocean processes in the model reduces this discrepancy bywhiteningthe midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability.

     
    more » « less
  2. Abstract

    Climate variability is investigated by identifying the energy sources and sinks in an idealized, coupled, ocean–atmosphere model, tuned to mimic the North Atlantic region. The spectral energy budget is calculated in the frequency domain to determine the processes that either deposit energy into or extract energy from each fluid, over time scales from one day up to 100 years. Nonlinear advection of kinetic energy is found to be the dominant source of low-frequency variability in both the ocean and the atmosphere, albeit in differing layers in each fluid. To understand the spatial patterns of the spectral energy budget, spatial maps of certain terms in the spectral energy budget are plotted, averaged over various frequency bands. These maps reveal three dynamically distinct regions: along the western boundary, the western boundary current separation, and the remainder of the domain. The western boundary current separation is found to be a preferred region to energize oceanic variability across a broad range of time scales (from monthly to decadal), while the western boundary itself acts as the dominant sink of energy in the domain at time scales longer than 50 days. This study paves the way for future work, using the same spectral methods, to address the question of forced versus intrinsic variability in a coupled climate system.

     
    more » « less
  3. Abstract

    We present a new ensemble of 36 numerical experiments aimed at comprehensively gauging the sensitivity of nested large-eddy simulations (LES) driven by large-scale dynamics. Specifically, we explore 36 multiscale configurations of the Weather Research and Forecasting (WRF) Model to simulate the boundary layer flow over the complex topography at the Perdigão field site, with five nested domains discretized at horizontal resolutions ranging from 11.25 km to 30 m. Each ensemble member has a unique combination of the following input factors: (i) large-scale initial and boundary conditions, (ii) subgrid turbulence modeling in thegray zoneof turbulence, (iii) subgrid-scale (SGS) models in LES, and (iv) topography and land-cover datasets. We probe their relative importance for LES calculations of velocity, temperature, and moisture fields. Variance decomposition analysis unravels large sensitivities to topography and land-use datasets and very weak sensitivity to the LES SGS model. Discrepancies within ensemble members can be as large as 2.5 m s−1for the time-averaged near-surface wind speed on the ridge and as large as 10 m s−1without time averaging. At specific time points, a large fraction of this sensitivity can be explained by the different turbulence models in the gray zone domains. We implement a horizontal momentum and moisture budget routine in WRF to further elucidate the mechanisms behind the observed sensitivity, paving the way for an increased understanding of the tangible effects of the gray zone of turbulence problem.

    Significance Statement

    Several science and engineering applications, including wind turbine siting and operations, weather prediction, and downscaling of climate projections, call for high-resolution numerical simulations of the lowest part of the atmosphere. Recent studies have highlighted that such high-resolution simulations, coupled with large-scale models, are challenging and require several important assumptions. With a new set of numerical experiments, we evaluate and compare the significance of different assumptions and outstanding challenges in multiscale modeling (i.e., coupling large-scale models and high-resolution atmospheric simulations). The ultimate goal of this analysis is to put each individual assumption into the wider perspective of a realistic problem and quantify its relative importance compared to other important modeling choices.

     
    more » « less
  4. null (Ed.)
    Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability. 
    more » « less
  5. We investigate the interannual variability of Agulhas leakage in an ocean-eddy-resolving coupled simulation and characterize its influence on regional climate. Many observational leakage estimates are based on the study of Agulhas rings, whereas recent model studies suggest that rings and eddies carry less than half of leakage transport. While leakage variability is dominated by eddies at seasonal time scales, the noneddy leakage transport is likely to be constrained by large-scale forcing at longer time scales. To investigate this, leakage transport is quantified using an offline Lagrangian particle tracking approach. We decompose the velocity field into eddying and large-scale fields and then recreate a number of total velocity fields by modifying the eddying component to assess the dependence of leakage variability on the eddies. We find that the resulting leakage time series show strong coherence at periods longer than 1000 days and that 50% of the variance at interannual time scales is linked to the smoothed, large-scale field. As shown previously in ocean models, we find Agulhas leakage variability to be related to a meridional shift and/or strengthening of the westerlies. High leakage periods are associated with east–west contrasting patterns of sea surface temperature, surface heat fluxes, and convective rainfall, with positive anomalies over the retroflection region and negative anomalies within the Indian Ocean to the east. High leakage periods are also related to reduced inland convective rainfall over southeastern Africa in austral summer.

     
    more » « less