skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A simplified method to evaluate geothermal storage in an aquifer with consideration of heat transfer between aquifer and caprock/baserock
Storing and extracting heat during different seasons of the year is possible through the utilization of a ground aquifer with an open loop Ground Source Heat Pump (GSHP) system. Being able to predict the hydrothermal performance of geothermal storage is required for an efficient operation of the system for cooling and heating of buildings. Complex 2D and 3D hydrothermal numerical models can simulate the thermal performance of geothermal storage accurately but often lack the desired computational speed for conducting large number of simulations for performance optimization. Instead, a 1D radial model can be used to conduct fast evaluation. However, it is important that the model computes the amount of heat loss from an aquifer into the overburden and underlying layers accurately to evaluate the amount of geothermal storage in the aquifer at different times. In this study, a source term is introduced into a 1D model to simulate the heat transfer between the aquifer and caprock/baserock in the vertical direction. The following two heat loss models are introduced in the heat advection-conduction equation: (i) Newton’s heating/cooling law, which leads to a closed form solution, and (ii) a conduction-based semi-analytical model, which requires a 1D finite element solution. When compared to a full 2D axisymmetric simulation result, it was found that the Newton’s heating/cooling law model with a constant heat transfer coefficient works well in cases of fast heat flow rate in thick aquifers of around 100 meters. But large errors in estimating heat dissipation are observed in cases with low heat flow rate in thin aquifers, especially for simulations exceeding two to five years. On the other hand, the model with the conduction-based semi-analytical solution gives a better match for these conditions.  more » « less
Award ID(s):
1903296
PAR ID:
10232758
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
McCartney, J.S.; Tomac, I.
Date Published:
Journal Name:
E3S Web of Conferences
Volume:
205
ISSN:
2267-1242
Page Range / eLocation ID:
07007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sedimentary basins are attractive for geothermal development due to their ubiquitous presence, high perme­ ability, and extensive lateral extent. Geothermal energy from sedimentary basins has mostly been used for direct heating purposes due to their relatively low temperatures, compared to conventional hydrothermal systems. However, there is an increasing interest in using sedimentary geothermal energy for electric power generation due to the advances in conversion technologies using binary cycles that allow electricity generation from reservoir temperatures as low as 80 ◦C. This work develops and implements analytical solutions for calculating reservoir impedance, reservoir heat depletion, and wellbore heat loss in sedimentary reservoirs that are laterally extensive, homogeneous, horizontally isotropic and have uniform thickness. Reservoir impedance and wellbore heat loss solutions are combined with a power cycle model to estimate the electricity generation potential. Results from the analytical solutions are in good agreement with numerically computed reservoir models. Our results suggest that wellbore heat loss can be neglected in many cases of electricity generation calculations, depending on the reservoir transmissivity. The reservoir heat depletion solution shows how reservoir tempera­ ture and useful lifetime behave as a function of flow rate, initial heat within the reservoir, and heat conduction from the surroundings to the reservoir. Overall, our results suggest that in an exploratory sedimentary geothermal field, these analytical solutions can provide reliable first order estimations without incurring intensive computational costs. 
    more » « less
  2. This submission contains the source code of the Hydrothermal Finite Element Simulator used for the Treasure Island and UC Berkeley campus geothermal simulation. It contains a report that summarizes the development and validation of this Hydrothermal Finite Element Simulator, with a case study on Treasure Island site. It also contains a report that investigates the feasibility of upgrading the existing campus energy delivery system at UC Berkeley to a fifth-generation district heating and cooling system that includes geothermal heat/cold storage. 
    more » « less
  3. Abstract Over the past 35 years the Buckman wellfield near Santa Fe, New Mexico, experienced production well drawdowns in excess of 180 m, resulting in ground subsidence and surface cracks. Increased reliance on surface water diversions since 2011 has reduced pumping and yielded water level recovery. To characterize the impact of wellfield management decisions on the aquifer system, we reconstruct the surface deformation history through the European Remote Sensing Satellite, Advanced Land Observing Satellite, and Sentinel‐1 Interferometric Synthetic Aperture Radar (InSAR) time series analysis during episodes of drawdown (1993–2000), recovery (2007–2010), and modern management (2015–2018) in discontinuous observations over a 25‐year period. The observed deformation generally reflects changes in hydraulic head. However, at times during the wellfield recovery, the deformation signal is complex, with patterns of uplift and subsidence suggesting a compartmentalized aquifer system. Recent records of locally high geothermal gradients and an overall warming of the system (~0.5°C during the water level recovery) obtained from repeat temperature measurements between 2013 and 2018 constrain a conceptual model of convective heat transfer that requires a vertical permeable zone near an observed fault. To reproduce observed temperature patterns at monitoring wells, high basal heat flow and convective cooling associated with downward flow of water from cool shallow aquifers during the drawdown period is necessary. The fault, however, appears to die out southward or may be locally permeable, as conceptual cross‐sectional hydrologic modeling reproduces the surface deformation without such a structure. Our work demonstrates the importance of incorporating well‐constrained stratigraphy and structure when modeling near‐surface deformation induced by, for instance, groundwater production. 
    more » « less
  4. null (Ed.)
    This study identifies hydrogeologic characteristics of complex aquifers based on constructing stratigraphic structure with large, non-uniform well log data. The approach was validated through a modeling study of the irrigation-intensive Chicot aquifer system, which is an important Pleistocene-Holocene aquifer of the Coastal Lowlands aquifer system in the southwestern Louisiana. Various well log types were unified into the same data structure, prioritized based on data sources, and interpolated to generate a detailed stratigraphic structure. More than 29,000 well logs were integrated to construct a stratigraphy model of 56 model layers for the Chicot aquifer system. The stratigraphy model revealed interconnections of various sands in the system, where 90% of the model domain is covered by fine-grained sediments. Although the groundwater model estimated a slight groundwater storage gain during 2005–2014 for the entire region, groundwater storage in the agricultural area was depleted. Nevertheless, the quick groundwater storage recovery during the non-irrigation seasons suggests that the Chicot aquifer system is a prolific aquifer system. The groundwater modeling result shows that the gulfward groundwater flow direction prior to pumping has been reversed toward inland pumping areas. The large upward vertical flow from the deeper sands indicates potential saltwater migration from the base of the Chicot aquifer system. 
    more » « less
  5. null (Ed.)
    Beach aquifers, located in the subsurface of sandy beaches, are unique ecosystems with steep chemical and physical gradients resulting from the mixing of terrestrial fresh groundwater and saline groundwater from the sea. While work has rapidly progressed to understand the physics and chemistry in this environment, much less is known about the microorganisms present despite the fact that they are responsible for vital biogeochemical processes. This paper presents a review of the current state of knowledge of microbes within beach aquifers and the mechanisms that control the beach aquifer microbiome. We review literature describing the distribution and diversity of microorganisms in the freshwater-saltwater mixing zone of beach aquifers, and identify just 12 papers. We highlight knowledge gaps, as well as future research directions: The understanding of beach aquifer microorganisms is informed primarily by 16S ribosomal RNA gene sequences. Metagenomics and metatranscriptomics have not yet been applied but are promising approaches for elucidating key metabolic and ecological roles of microbes in this environment. Additionally, variability in field sampling and analytical methods restrict comparison of data across studies and geographic locations. Further, documented evidence on the migration of microbes within the beach aquifer is limited. Taking into account the physical transport of microbes through sand by flowing groundwater may be critical for understanding the structure and dynamics of microbial communities. Quantitative measurements of rates of elemental cycling in the context of microbial diversity need further investigation, in order to understand the roles of microbes in mediating biogeochemical fluxes from the beach aquifer to the coastal ocean. Lastly, understanding the current state of beach aquifers in regulating carbon stocks is critical to foster a better understanding of the contribution of the beach aquifer microbiome to global climate models. 
    more » « less