skip to main content

Title: Interclonal variation, coordination, and trade-offs between hydraulic conductance and gas exchange in Pinus radiata : consequences on plant growth and wood density
Abstract Stem growth reflects genetic and phenotypic differences within a tree species. The plant hydraulic system regulates the carbon economy, and therefore variations in growth and wood density. A whole-organism perspective, by partitioning the hydraulic system, is crucial for understanding the physical and physiological processes that coordinately mediate plant growth. The aim of this study was to determine whether the relationships and trade-offs between (i) hydraulic traits and their relative contribution to the whole-plant hydraulic system, (ii) plant water transport, (iii) CO2 assimilation, (iv) plant growth, and (v) wood density are revealed at the interclonal level within a variable population of 10 Pinus radiata (D. Don) clones for these characters. We demonstrated a strong coordination between several plant organs regarding their hydraulic efficiency. Hydraulic efficiency, gas exchange, and plant growth were intimately linked. Small reductions in stem wood density were related to a large increase in sapwood hydraulic efficiency, and thus to plant growth. However, stem growth rate was negatively related to wood density. We discuss insights explaining the relationships and trade-offs of the plant traits examined in this study. These insights provide a better understanding of the existing coordination, likely to be dependent on genetics, between the biophysical structure more » of wood, plant growth, hydraulic partitioning, and physiological plant functions in P. radiata. « less
; ; ; ; ;
Forterre, Yoel
Award ID(s):
Publication Date:
Journal Name:
Journal of Experimental Botany
Page Range or eLocation-ID:
2419 to 2433
Sponsoring Org:
National Science Foundation
More Like this
  1. Medeiros, Juliana (Ed.)
    Abstract The study of plant functional traits and variation among and within species can help illuminate functional coordination and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem, below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-ground stem and rhizome specific density, and these relationships became stronger after accounting formore »evolutionary relatedness, indicating correlated evolution. Despite elevation and climatic differences among sites, high trait variation was ascribed to individuals rather than to sites. We conclude that Costus species present trait coordination and trade-offs that allow species to be categorized as having a resource-acquisitive or resource-conservative functional strategy, consistent with a whole-plant functional strategy with evident coordination and trade-offs between above-ground and below-ground function. Our results also show that herbaceous species and species with rhizomes tend to agree with trade-offs found in more species-rich comparisons.« less
  2. Abstract

    A holistic understanding of superorganism biology requires study of colony sociometry, or the quantitative relationships among growth, nest architecture, morphology, and behavior. For ant colonies that obligately nest within plant hosts, their sociometry is likely intertwined with the plant, which has implications for the evolution, strength, and stability of the mutualism. In theAzteca-Cecropiamutualism, plants provide ants with food rewards and hollow stems for nesting in return for protection from herbivores. Several interesting questions arise when considering ant-plant sociometry: are colony growth and plant growth synchronized? How do colonies distribute themselves within the stem of their host plant? How do plant traits influence worker morphology? How is collective personality related to tree structure, nest organization, and worker morphology? To address these questions, we investigated patterns within and relationships among five major sociometric categories of colonies in the field – plant traits, colony size, nest organization, worker morphology, and collective personality. We found that colony sociometry was intimately intertwined with host plant traits. Colony and plant growth rates were synchronized, suggesting that positive feedback between plant and colony growth stabilizes the mutualism. The colony’s distribution inside the host tree tended to follow leaf growth, with most workers, brood, and the queenmore »in the top half of the tree. Worker morphology correlated with plant size instead of colony size or age, which suggests that plant traits influence worker development. Colony personality was independent of colony distribution and tree structure but may correlate with worker size such that colonies with smaller, less variable workers had more aggressive personalities. This study provides insights into how ant-plant structural relationships may contribute to plant protection and the strength of mutualisms.

    « less
  3. Trait-based analyses provide powerful tools for developing a generalizable, physiologically grounded understanding of how forest communities are responding to ongoing environmental changes. Key challenges lie in (1) selecting traits that best characterize the ecological performance of species in the community and (2) determining the degree and importance of intraspecific variability in those traits. Recent studies suggest that globally evident trait correlations (trait dimensions), such as the leaf economic spectrum, may be weak or absent at local scales. Moreover, trait-based analyses that utilize a mean value to represent a species may be misleading. Mean trait values are particularly problematic if species trait value rankings change along environmental gradients, resulting in species trait crossover. To assess how plant traits (1) covary at local spatial scales, (2) vary across the dominant environmental gradients, and (3) can be partitioned within and across taxa, we collected data on 9 traits for 13 tree species spanning the montane temperate—boreal forest ecotones of New York and northern New England. The primary dimension of the trait ordination was the leaf economic spectrum, with trait variability among species largely driven by differences between deciduous angiosperms and evergreen gymnosperms. A second dimension was related to variability in nitrogen to phosphorousmore »levels and stem specific density. Levels of intraspecific trait variability differed considerably among traits, and was related to variation in light, climate, and tree developmental stage. However, trait rankings across species were generally conserved across these gradients and there was little evidence of species crossover. The persistence of the leaf economics spectrum in both temperate and high-elevation conifer forests suggests that ecological strategies of tree species are associated with trade-offs between resource acquisition and tolerance, and may be quantified with relatively few traits. Furthermore, the assumption that species may be represented with a single trait value may be warranted for some trait-based analyses provided traits were measured under similar light levels and climate conditions.« less
  4. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  5. Cernusak, Lucas (Ed.)
    Abstract Tree growth is generally considered to be temperature limited at upper elevation treelines, yet climate factors controlling tree growth at semiarid treelines are poorly understood. We explored the influence of climate on stem growth and stable isotopes for Polylepis tarapacana Philipi, the world’s highest elevation tree species, which is found only in the South American Altiplano. We developed tree-ring width index (RWI), oxygen (δ18O) and carbon (δ13C) chronologies for the last 60 years at four P. tarapacana stands located above 4400 m in elevation, along a 500 km latitude aridity gradient. Total annual precipitation decreased from 300 to 200 mm from the northern to the southern sites. We used RWI as a proxy of wood formation (carbon sink) and isotopic tree-ring signatures as proxies of leaf-level gas exchange processes (carbon source). We found distinct climatic conditions regulating carbon sink processes along the gradient. Current growing-season temperature regulated RWI at northern-wetter sites, while prior growing-season precipitation determined RWI at arid southern sites. This suggests that the relative importance of temperature to precipitation in regulating tree growth is driven by site water availability. By contrast, warm and dry growing seasons resulted in enriched tree-ring δ13C and δ18O at all study sites, suggesting thatmore »similar climate conditions control carbon-source processes along the gradient. Site-level δ13C and δ18O chronologies were significantly and positively related at all sites, with the strongest relationships among the southern drier stands. This indicates an overall regulation of intercellular carbon dioxide via stomatal conductance for the entire P. tarapacana network, with greater stomatal control when aridity increases. This manuscript also highlights a coupling (decoupling) between physiological processes at leaf level and wood formation as a function of similarities (differences) in their climatic sensitivity. This study contributes to a better understanding and prediction of the response of high-elevation Polylepis woodlands to rapid climate changes and projected drying in the Altiplano.« less