Optimal Transport (OT) distances such as Wasserstein have been used in several areas such as GANs and domain adaptation. OT, however, is very sensitive to outliers (samples with large noise) in the data since in its objective function, every sample, including outliers, is weighed similarly due to the marginal constraints. To remedy this issue, robust formulations of OT with unbalanced marginal constraints have previously been proposed. However, employing these methods in deep learning problems such as GANs and domain adaptation is challenging due to the instability of their dual optimization solvers. In this paper, we resolve these issues by derivingmore »
Optimal Transport with Relaxed Marginal Constraints
Optimal transport (OT) is a principled approach for matching, having achieved success in diverse applications such as tracking and cluster alignment. It is also the core computation problem for solving the Wasserstein metric between probabilistic distributions, which has been increasingly used in machine learning. Despite its popularity, the marginal constraints of OT impose fundamental limitations. For some matching or pattern extraction problems, the framework of OT is not suitable, and post-processing of the OT solution is often unsatisfactory. In this paper, we extend OT by a new optimization formulation called Optimal Transport with Relaxed Marginal Constraints (OT-RMC). Specifically, we relax the marginal constraints by introducing a penalty on the deviation from the constraints. Connections with the standard OT are revealed both theoretically and experimentally. We demonstrate how OT-RMC can easily adapt to various tasks by three highly different applications in image analysis and single-cell data analysis. Quantitative comparisons have been made with OT and another commonly used matching scheme to show the remarkable advantages of OT-RMC.
- Award ID(s):
- 2013905
- Publication Date:
- NSF-PAR ID:
- 10233024
- Journal Name:
- IEEE Access
- Volume:
- 9
- Page Range or eLocation-ID:
- 1 to 1
- ISSN:
- 2169-3536
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An optimal transportation map finds the most economical way to transport one probability measure to the other. It has been applied in a broad range of applications in vision, deep learning and medical images. By Brenier theory, computing the optimal transport map is equivalent to solving a Monge-Amp\`ere equation. Due to the highly non-linear nature, the computation of optimal transportation maps in large scale is very challenging. This work proposes a simple but powerful method, the FFT-OT algorithm, to tackle this difficulty based on three key ideas. First, solving Monge-Amp\`ere equation is converted to a fixed point problem; Second, themore »
-
Optimal Transport (OT) naturally arises in many machine learning applications, yet the heavy computational burden limits its wide-spread uses. To address the scalability issue, we propose an implicit generative learning-based framework called SPOT (Scalable Push-forward of Optimal Transport). Specifically, we approximate the optimal transport plan by a pushforward of a reference distribution, and cast the optimal transport problem into a minimax problem. We then can solve OT problems efficiently using primal dual stochastic gradient-type algorithms. We also show that we can recover the density of the optimal transport plan using neural ordinary differential equations. Numerical experiments on both synthetic andmore »
-
Optimal Transport (OT) naturally arises in many machine learning applications, yet the heavy computational burden limits its wide-spread uses. To address the scalability issue, we propose an implicit generative learning-based framework called SPOT (Scalable Push-forward of Optimal Transport). Specifically, we approximate the optimal transport plan by a pushforward of a reference distribution, and cast the optimal transport problem into a minimax problem. We then can solve OT problems efficiently using primal dual stochastic gradient-type algorithms. We also show that we can recover the density of the optimal transport plan using neural ordinary differential equations. Numerical experiments on both synthetic andmore »
-
We propose a unified data-driven framework based on inverse optimal transport that can learn adaptive, nonlinear interaction cost function from noisy and incomplete empirical matching matrix and predict new matching in various matching contexts. We emphasize that the discrete optimal transport plays the role of a variational principle which gives rise to an optimization based framework for modeling the observed empirical matching data. Our formulation leads to a non-convex optimization problem which can be solved efficiently by an alternating optimization method. A key novel aspect of our formulation is the incorporation of marginal relaxation via regularized Wasserstein distance, significantly improvingmore »