A chromophoric bifunctional probe design that allows selective chiroptical sensing of cysteine in aqueous solution is introduced. The common need for chiral HPLC separation is eliminated which expedites and simplifies the sample analysis while reducing solvent waste. Screening of the reaction between six phenacyl bromides and the enantiomers of cysteine showed that cyclization to an unsaturated thiomorpholine scaffold coincides with characteristic UV and CD effects, in particular when the reagent carries a proximate auxochromic nitro group. The UV changes and CD inductions were successfully used for determination of the absolute configuration, enantiomeric composition and total concentration of 18 test samples. This assay is highly selective for free cysteine while other amino acids, cysteine derived small peptides and biothiols do not interfere with the chiroptical signal generation.
more »
« less
Chiroptical sensing of homocysteine
The cyclization reaction between ortho -phthalaldehyde and l -homocysteine coincides with the generation of a pronounced positive CD signal at approximately 335 nm. Under identical conditions, other amino acids including cysteine produce very weak CD responses. This unusual substrate specificity allows accurate chiroptical analysis of the enantiomeric composition of homocysteine samples in the presence of cysteine without the need for time-consuming chromatographic separation. This significantly simplifies and speeds up ee determination at reduced solvent waste production.
more »
« less
- Award ID(s):
- 1764135
- PAR ID:
- 10233082
- Date Published:
- Journal Name:
- Organic & Biomolecular Chemistry
- Volume:
- 18
- Issue:
- 42
- ISSN:
- 1477-0520
- Page Range / eLocation ID:
- 8629 to 8632
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ligand‐assisted perovskite nanoclusters (PNCs) have been synthesized using oleylamine and L‐ or D‐cysteine as confirmed based on their characteristic electronic absorption bands around 430 nm based on ultraviolet‐visible spectra. Circular dichroism (CD) spectra show distinct chiroptical bands in the 430–440 nm region, revealing the chirality of the PNCs. Interestingly, the sign of the CD signal is always negative, independent of the chirality for L‐ or D‐cystine. This 430–440 nm CD band is tentatively attributed to the formation of new chiral stereocenters within the PNCs with an uneven ratio of two enantiomers induced by the asymmetric liquid–liquid interface from the solvent and antisolvent used during synthesis.more » « less
-
Reactivity of Thiol-Rich Zn Sites in Diacylglycerol-Sensing PKC C1 Domain Probed by NMR Spectroscopynull (Ed.)Conserved homology 1 (C1) domains are peripheral zinc finger domains that are responsible for recruiting their host signaling proteins, including Protein Kinase C (PKC) isoenzymes, to diacylglycerol-containing lipid membranes. In this work, we investigated the reactivity of the C1 structural zinc sites, using the cysteine-rich C1B regulatory region of the PKCα isoform as a paradigm. The choice of Cd 2+ as a probe was prompted by previous findings that xenobiotic metal ions modulate PKC activity. Using solution NMR and UV-vis spectroscopy, we found that Cd 2+ spontaneously replaced Zn 2+ in both structural sites of the C1B domain, with the formation of all-Cd and mixed Zn/Cd protein species. The Cd 2+ substitution for Zn 2+ preserved the C1B fold and function, as probed by its ability to interact with a potent tumor-promoting agent. Both Cys 3 His metal-ion sites of C1B have higher affinity to Cd 2+ than Zn 2+ , but are thermodynamically and kinetically inequivalent with respect to the metal ion replacement, despite the identical coordination spheres. We find that even in the presence of the oxygen-rich sites presented by the neighboring peripheral membrane-binding C2 domain, the thiol-rich sites can successfully compete for the available Cd 2+ . Our results indicate that Cd 2+ can target the entire membrane-binding regulatory region of PKCs, and that the competition between the thiol- and oxygen-rich sites will likely determine the activation pattern of PKCs.more » « less
-
Photocatalysis is an attractive, sustainable, and potentially low-cost route to capture solar energy as fuel. However, current photocatalytic materials synthesis routes are not easily scaled-up to the magnitude required to impact our energy consumption due to both economic and environmental concerns. While the elements utilized are often earth abundant, typical synthetic routes utilize organic solvents at elevated temperatures with relatively expensive precursors. Herein, we demonstrate the fully biomineralized synthesis of a quantum confined CdS/reduced graphene oxide (CdS/rGO) photocatalyst catalyzed by the single enzyme cystathionine γ-lyase (CSE). The synthesis is performed at pH 9 in a buffered aqueous solution, under ambient conditions, and utilizes the low-cost precursors Cd acetate, l -cysteine, graphene oxide, and a poly- l -lysine linker molecule. CSE actively decomposes l -cysteine to generate reactive HS − in aqueous solution at pH 9. Careful selection and control of the synthesis conditions enable both reduction of graphene oxide to rGO, and control over the mean CdS nanocrystal size. The CdS is conjugated to the rGO via a poly- l -lysine crosslinker molecule introduced during rGO formation. The completed CdS/rGO photocatalyst is capable of producing H 2 , without the aid of a noble metal co-catalyst, at a rate of 550 μmol h −1 g −1 for an optimized CdS/rGO ratio. This rate is double that measured for unsupported CdS and is comparable to CdS/rGO photocatalysts produced using more typical chemical synthesis routes. Single enzyme biomineralization by CSE can produce a range of metal chalcogenides without altering the enzyme or benign approach, making this an easily adaptable procedure for the sustainable production of a wide variety of important photocatalyst systems.more » « less
-
We demonstrate a host-guest molecular recognition approach to advance double electron-electron resonance (DEER) distance measurements of spin-labeled proteins. We synthesized an iodoacetamide (IA) derivative of 2,6-diazaadamantane nitroxide (DZD) spin label that could be doubly incorporated into T4 Lysozyme (T4L) by site-directed spin labeling (SDSL) with efficiency up to 50% per cysteine. The rigidity of the fused ring structure and absence of mobile methyl groups increase the spin echo dephasing time (Tm) at temperatures above 80 K. This enables DEER measurements of distances >4 nm in DZD labeled-T4L in glycerol/water at temperatures up to 150 K, with increased sensitivity compared to common spin label such as MTSL. Addition of β-cyclodextrin (β-CD) reduces the rotational correlation time of the label, slightly increases Tm, and most importantly, narrows (and slightly lengthens) the inter-spin distance distributions. The distance distributions are in good agreement with simulated distance distributions obtained by rotamer libraries. These results provide a foundation for developing supramolecular recognition to facilitate long-distance DEER measurements at near physiological temperatures.more » « less
An official website of the United States government

