skip to main content


Search for: All records

Award ID contains: 1764135

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fluorinated oxindoles are frequently used building blocks in asymmetric synthesis and represent an important scaffold found in a variety of biologically relevant compounds. While it is understood that incorporation of fluorine atoms into organic molecules can improve their pharmacological properties, the impact on the configurational stability of chiral organofluorines is still underexplored. In this study, semipreparative HPLC enantioseparations of five oxindoles were carried out, and the resulting enantiomerically enriched solutions were used to investigate base promoted racemization kinetics at room temperature. It was found that incorporation of fluorine at the chiral center increases the configurational stability, while substitutions on the aromatic ring and at the lactam moiety also have significant effects on the rate of racemization, which generally follows reversible first‐order reaction kinetics.

     
    more » « less
  2. Abstract

    A sterically encumbered aminoborane sensor is introduced and used for quantitative stereochemical analysis of monoalcohols, diols and amino alcohols. The small‐molecule probe exhibits a rigid ortho‐substituted arene scaffold with a proximate boron binding site and a triarylamine circular dichroism (CD) reporter unit which proved to be crucial for the observed chiroptical signal induction. Coordination of the chiral target molecule produces strong Cotton effects and UV changes that are readily correlated to its absolute configuration, enantiomeric composition and concentration to achieve comprehensive stereochemical analysis within a 5 % absolute error margin. The sensing method was successfully applied in the chromatography‐free analysis of less than one milligram of a crude asymmetric reaction mixture and the advantages of this chiroptical sensing approach, which is amenable to high‐throughput experimentation equipment and automation, over traditional methods is discussed.

     
    more » « less
  3. Abstract

    Analytical methods that allow simultaneous determination of the concentration and enantiomeric composition of small sample amounts and are also compatible with high‐throughput multi‐well plate technology have received increasing attention in recent years. We now introduce a new class of broadly useful small‐molecule probes and a relay sensing strategy that together accomplish these tasks with five classes of compounds including the challenging group of mono‐alcohols—a scope that stands out among previously reported UV, fluorescence, and CD assays. Several chlorophosphite probes and aniline indicators have been evaluated and used for on‐the‐fly CD/UV sensing following a continuous workflow. The wide application range of the readily available sensors is highlighted with almost 30 alcohols, diols, hydroxy acids, amines and amino alcohols, and the accuracy of the stereochemical analysis is showcased with samples covering a wide range of concentrations and enantiomeric ratios.

     
    more » « less
  4. Abstract

    We have developed an optical method for accurate concentration,er, anddranalysis of amino alcohols based on a simple mix‐and‐measure workflow that is fully adaptable to multiwell plate technology and microscale analysis. The conversion of the four aminoindanol stereoisomers with salicylaldehyde to the corresponding Schiff base allows analysis of thedrbased on a change in the UV maximum at 420 nm that is very different for the homo‐ and heterochiral diastereomers and of the concentration of the sample using a hypsochromic shift of another absorption band around 340 nm that is independent of the analyte stereochemistry. Subsequent in situ formation of CuIIassemblies in the absence and presence of base enables quantification of theervalues for each diastereomeric pair by CD analysis. Applying a linear programming method and a parameter sweep algorithm, we determined the concentration and relative amounts of each of the four stereoisomers in 20 samples of vastly different stereoisomeric compositions with an averaged absolute percent error of 1.7 %.

     
    more » « less
  5. Abstract

    Broadly useful chiroptical enantiomeric excess (ee) sensing remains challenging and typically involves carefully designed molecular receptors or supramolecular assemblies. Herein, we report on the enantioselective sensing of 35 amino acids, amino phosphonic acids, hydroxy acids, amino alcohols, and diamines with an auxiliary‐free cobalt probe. Chiroptical analysis of the enantiomeric composition and concentration of minute sample amounts was achieved with high accuracy by using earth‐abundant cobalt salts and hydrogen peroxide as the oxidant. Despite the absence of an auxiliary ligand, the cobalt assay is applicable to aromatic and aliphatic compounds and yields strong CD signals at high wavelengths. This method obviates the general prerequisite for chromophoric metal ligands to generate chiroptical signals through ECCD (exciton‐coupled circular dichroism) effects or through analyte‐to‐ligand chirality induction, and it offers operational simplicity, cost efficiency, waste reduction, and speed.

     
    more » « less
  6. Abstract Asymmetric reaction development often involves optimization of several mutually dependent parameters that affect the product yield and enantiomeric excess. Widely available high-throughput experimentation equipment and optical sensing assays can drastically streamline comprehensive optimization efforts and speed up the discovery process at reduced cost, workload, and waste production. A variety of chiroptical assays that utilize fluorescence, UV, and circular dichroism measurements to determine reaction yields and ee values are now available, enabling the screening of numerous small-scale reaction samples in parallel with multi-well plate technology. Many of these optical methods considerably shorten work-up protocols typically required for traditional asymmetric reaction analysis and some can be directly applied to crude mixtures thus eliminating cumbersome separation and purification steps altogether. 1 Introduction 2 Fluorescence Assays 3 UV Sensing Methods 4 Sensing with Circular Dichroism Probes 5 Hybrid Approaches 6 Optical Analysis with Intrinsically CD-Active Reaction Products 7 Conclusion 
    more » « less
  7. A chromophoric bifunctional probe design that allows selective chiroptical sensing of cysteine in aqueous solution is introduced. The common need for chiral HPLC separation is eliminated which expedites and simplifies the sample analysis while reducing solvent waste. Screening of the reaction between six phenacyl bromides and the enantiomers of cysteine showed that cyclization to an unsaturated thiomorpholine scaffold coincides with characteristic UV and CD effects, in particular when the reagent carries a proximate auxochromic nitro group. The UV changes and CD inductions were successfully used for determination of the absolute configuration, enantiomeric composition and total concentration of 18 test samples. This assay is highly selective for free cysteine while other amino acids, cysteine derived small peptides and biothiols do not interfere with the chiroptical signal generation. 
    more » « less