skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional limit theorems for the euler characteristic process in the critical regime
Abstract This study presents functional limit theorems for the Euler characteristic of Vietoris–Rips complexes. The points are drawn from a nonhomogeneous Poisson process on $$\mathbb{R}^d$$ , and the connectivity radius governing the formation of simplices is taken as a function of the time parameter t , which allows us to treat the Euler characteristic as a stochastic process. The setting in which this takes place is that of the critical regime, in which the simplicial complexes are highly connected and have nontrivial topology. We establish two ‘functional-level’ limit theorems, a strong law of large numbers and a central limit theorem, for the appropriately normalized Euler characteristic process.  more » « less
Award ID(s):
1811428
PAR ID:
10233136
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in Applied Probability
Volume:
53
Issue:
1
ISSN:
0001-8678
Page Range / eLocation ID:
57 to 80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate multivariate bootstrap procedures for general stabilizing statistics, with specific application to topological data analysis. The work relates to other general results in the area of stabilizing statistics, including central limit theorems for geometric and topological functionals of Poisson and binomial processes in the critical regime, where limit theorems prove difficult to use in practice, motivating the use of a bootstrap approach. A smoothed bootstrap procedure is shown to give consistent estimation in these settings. Specific statistics considered include the persistent Betti numbers of Čech and Vietoris–Rips complexes over point sets in Rd, along with Euler characteristics, and the total edge length of the k-nearest neighbor graph. Special emphasis is given to weakening the necessary conditions needed to establish bootstrap consistency. In particular, the assumption of a continuous underlying density is not required. Numerical studies illustrate the performance of the proposed method. 
    more » « less
  2. Abstract The objective of this study is to examine the asymptotic behavior of Betti numbers of Čech complexes treated as stochastic processes and formed from random points in the d -dimensional Euclidean space $${\mathbb{R}}^d$$ . We consider the case where the points of the Čech complex are generated by a Poisson process with intensity nf for a probability density f . We look at the cases where the behavior of the connectivity radius of the Čech complex causes simplices of dimension greater than $k+1$ to vanish in probability, the so-called sparse regime, as well when the connectivity radius is of the order of $$n^{-1/d}$$ , the critical regime. We establish limit theorems in the aforementioned regimes: central limit theorems for the sparse and critical regimes, and a Poisson limit theorem for the sparse regime. When the connectivity radius of the Čech complex is $$o(n^{-1/d})$$ , i.e. the sparse regime, we can decompose the limiting processes into a time-changed Brownian motion or a time-changed homogeneous Poisson process respectively. In the critical regime, the limiting process is a centered Gaussian process but has a much more complicated representation, because the Čech complex becomes highly connected with many topological holes of any dimension. 
    more » « less
  3. A local limit theorem is proven on connected, simply connected nilpotent Lie groups, for a class of generating measures satisfying a moment condition and a condition on the characteristic function of the abelianization. The result extends an earlier local limit theorem of Alexopoulos which treated absolutely continuous measures with a continuous density of compact support, and also extends local limit theorems of Breuillard and Diaconis–Hough which treated general measures on the Heisenberg group. 
    more » « less
  4. null (Ed.)
    Abstract Smooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier–Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin–Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler–Poincaré and stochastic Navier–Stokes–Poincaré equations respectively. The stochastic Euler–Poincaré equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems. 
    more » « less
  5. This book develops limit theorems for a natural class of long range random walks on finitely generated torsion free nilpotent groups. The limits in these limit theorems are Lévy processes on some simply connected nilpotent Lie groups. Both the limit Lévy process and the limit Lie group carrying this process are determined by and depend on the law of the original random walk. The book offers the first systematic study of such limit theorems involving stable-like random walks and stable limit Lévy processes in the context of (non-commutative) nilpotent groups. 
    more » « less