skip to main content

Title: Stochastic Load Balancing on Unrelated Machines
We consider the problem of makespan minimization on unrelated machines when job sizes are stochastic. The goal is to find a fixed assignment of jobs to machines, to minimize the expected value of the maximum load over all the machines. For the identical-machines special case when the size of a job is the same across all machines, a constant-factor approximation algorithm has long been known. Our main result is the first constant-factor approximation algorithm for the general case of unrelated machines. This is achieved by (i) formulating a lower bound using an exponential-size linear program that is efficiently computable and (ii) rounding this linear program while satisfying only a specific subset of the constraints that still suffice to bound the expected makespan. We also consider two generalizations. The first is the budgeted makespan minimization problem, where the goal is to minimize the expected makespan subject to scheduling a target number (or reward) of jobs. We extend our main result to obtain a constant-factor approximation algorithm for this problem. The second problem involves q-norm objectives, where we want to minimize the expected q-norm of the machine loads. Here we give an [Formula: see text]-approximation algorithm, which is a constant-factor approximation for any fixed q.  more » « less
Award ID(s):
2006953 2006778 1940766 1750127
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Mathematics of Operations Research
Page Range / eLocation ID:
115 to 133
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We consider a natural generalization of classical scheduling problems to a setting in which using a time unit for processing a job causes some time-dependent cost, the time-of-use tariff, which must be paid in addition to the standard scheduling cost. We focus on preemptive single-machine scheduling and two classical scheduling cost functions, the sum of (weighted) completion times and the maximum completion time, that is, the makespan. While these problems are easy to solve in the classical scheduling setting, they are considerably more complex when time-of-use tariffs must be considered. We contribute optimal polynomial-time algorithms and best possible approximation algorithms. For the problem of minimizing the total (weighted) completion time on a single machine, we present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time slots to be used for preemptively scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-time approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for. For preemptive scheduling to minimize the makespan, we show that there is a comparably simple optimal algorithm with polynomial running time. This is true even in a certain generalized model with unrelated machines. 
    more » « less
  2. Motivated by modern parallel computing applications, we consider the problem of scheduling parallel-task jobs with heterogeneous resource requirements in a cluster of machines. Each job consists of a set of tasks that can be processed in parallel; however, the job is considered completed only when all its tasks finish their processing, which we refer to as the synchronization constraint. Furthermore, assignment of tasks to machines is subject to placement constraints, that is, each task can be processed only on a subset of machines, and processing times can also be machine dependent. Once a task is scheduled on a machine, it requires a certain amount of resource from that machine for the duration of its processing. A machine can process (pack) multiple tasks at the same time; however, the cumulative resource requirement of the tasks should not exceed the machine’s capacity. Our objective is to minimize the weighted average of the jobs’ completion times. The problem, subject to synchronization, packing, and placement constraints, is NP-hard, and prior theoretical results only concern much simpler models. For the case that migration of tasks among the placement-feasible machines is allowed, we propose a preemptive algorithm with an approximation ratio of [Formula: see text]. In the special case that only one machine can process each task, we design an algorithm with an improved approximation ratio of four. Finally, in the case that migrations (and preemptions) are not allowed, we design an algorithm with an approximation ratio of 24. Our algorithms use a combination of linear program relaxation and greedy packing techniques. We present extensive simulation results, using a real traffic trace, that demonstrate that our algorithms yield significant gains over the prior approaches. 
    more » « less
  3. Naor, Joseph ; Buchbinder, Niv (Ed.)
    In the problem of scheduling with non-uniform communication delays, the input is a set of jobs with precedence constraints. Associated with every precedence constraint between a pair of jobs is a communication delay, the time duration the scheduler has to wait between the two jobs if they are scheduled on different machines. The objective is to assign the jobs to machines to minimize the makespan of the schedule. Despite being a fundamental problem in theory and a consequential problem in practice, the approximability of scheduling problems with communication delays is not very well understood. One of the top ten open problems in scheduling theory, in the influential list by Schuurman and Woeginger and its latest update by Bansal, asks if the problem admits a constant-factor approximation algorithm. In this paper, we answer this question in the negative by proving a logarithmic hardness for the problem under the standard complexity theory assumption that NP-complete problems do not admit quasi-polynomial-time algorithms. Our hardness result is obtained using a surprisingly simple reduction from a problem that we call Unique Machine Precedence constraints Scheduling (UMPS). We believe that this problem is of central importance in understanding the hardness of many scheduling problems and we conjecture that it is very hard to approximate. Among other things, our conjecture implies a logarithmic hardness of related machine scheduling with precedences, a long-standing open problem in scheduling theory and approximation algorithms. 
    more » « less
  4. We study subtrajectory clustering under the Fréchet distance. Given one or more trajectories, the task is to split the trajectories into several parts, such that the parts have a good clustering structure. We approach this problem via a new set cover formulation, which we think provides a natural formalization of the problem as it is studied in many applications. Given a polygonal curve P with n vertices in fixed dimension, integers k, ℓ ≥ 1, and a real value Δ > 0, the goal is to find k center curves of complexity at most ℓ such that every point on P is covered by a subtrajectory that has small Fréchet distance to one of the k center curves (≤ Δ). In many application scenarios, one is interested in finding clusters of small complexity, which is controlled by the parameter ℓ. Our main result is a bicriterial approximation algorithm: if there exists a solution for given parameters k, ℓ, and Δ, then our algorithm finds a set of k' center curves of complexity at most ℓ with covering radius Δ' with k' in O(kℓ2 log (kℓ)), and Δ' ≤ 19Δ. Moreover, within these approximation bounds, we can minimize k while keeping the other parameters fixed. If ℓ is a constant independent of n, then, the approximation factor for the number of clusters k is O(log k) and the approximation factor for the radius Δ is constant. In this case, the algorithm has expected running time in Õ(km2 + mn) and uses space in O(n + m), where m=⌈L/Δ⌉ and L is the total arclength of the curve P. 
    more » « less
  5. null (Ed.)
    Uncertainty is an omnipresent issue in real-world optimization problems. This paper studies a fundamental problem concerning uncertainty, known as the β-robust scheduling problem. Given a set of identical machines and a set of jobs whose processing times follow a normal distribution, the goal is to assign jobs to machines such that the probability that all the jobs are completed by a given common due date is maximized. We give the first systematic study on the complexity and algorithms for this problem. A strong negative result is shown by ruling out the existence of any polynomial-time algorithm with a constant approximation ratio for the general problem unless P=NP. On the positive side, we provide the first FPT-AS (fixed parameter tractable approximation scheme) parameterized by the number of different kinds of jobs, which is a common parameter in scheduling problems. It returns a solution arbitrarily close to the optimal solution, provided that the job processing times follow a few different types of distributions. We further complement the theoretical results by implementing our algorithm. The experiments demonstrate that by choosing an appropriate approximation ratio, the algorithm can efficiently compute a near-optimal solution. 
    more » « less