The Indian (southwest) summer monsoon is one of the most intense climatic phenomena on Earth, with its long-term development possibly linked to the growth of high topography in South and Central Asia. The Indian continental margin, adjoining the Arabian Sea, offers a unique opportunity to investigate tectonic–climatic interactions and the net impact of these processes on weathering and erosion of the western Himalaya. During International Ocean Discovery Program Expedition 355, two sites were drilled in Laxmi Basin in the eastern Arabian Sea to document the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. In addition, recovering basement from the eastern Arabian Sea provides constraints on the early rifting history of the western continental margin of India with special emphasis on continental breakup between India and the Seychelles and its relationship to the plume-related volcanism of the Deccan Plateau. A major submarine fan probably draining the western Himalaya and Karakoram must have been supplying sediment to the eastern Arabian Sea since at least ~17 Ma. Sand mineral assemblages indicate that the Greater Himalayan Crystalline Sequence was fully exposed to the surface by this time. Most of the recovered sediment appears to be derived from the Indus River and includes minerals that are unique to the Indus Suture Zone, in particular glaucophane and hypersthene, most likely originating from the structural base of the Kohistan arc (i.e., within the Indus Suture Zone). Pliocene sandy intervals at Site U1456 were deposited in lower fan “sheet lobe” settings, with intervals of basin–plain turbidites separated by hemipelagic muddy sections deposited during the Miocene. Site U1457 is more distal in facies, reflecting its more marginal setting. No major active lobe appears to have affected Laxmi Basin since the late early Pleistocene (~1.2–1.5 Ma). We succeeded in recovering sections spanning the 8 Ma climatic transition, when monsoon intensity is believed to have changed strongly, although the nature of this change awaits postcruise analysis. We also recovered sediment from large mass transport deposits measuring ~330 and ~190 m thick at Sites U1456 and U1457, respectively. These sections include an upper sequence of slump-folded muddy and silty rocks, as well as underlying calcarenites and limestone breccias, together with smaller amounts of volcanic clasts, all of which are likely derived from the western Indian continental shelf. Identification of similar facies on the regional seismic lines in Laxmi Basin suggests that these deposits form parts of one of the world’s largest mass transport deposits. Coring of igneous basement was achieved at Site U1457. Recovery of massive basalt and associated volcaniclastic sediment at this site should address the key questions related to rifting and volcanism associated with formation of Laxmi Basin. Geochemical analysis indicates that these are low-K, high-Mg subalkaline tholeiitic basalts and do not represent a typical mid-ocean-ridge basalt. Other observations made at the two sites during Expedition 355 provide vital constraints on the rift history of this margin. Heat flow measurements at the two drill sites were calculated to be ~57 and ~60 mW/m2. Such heat flow values are compatible with those observed in average oceanic crust of 63–84 Ma age, as well as with the presence of highly extended continental crust. Postcruise analyses of the more than ~1722 m of core will provide further information about the nature of tectonic–climatic interactions in this global type area for such studies.
more »
« less
Expedition 355 Scientific Prospectus: Arabian Sea Monsoon
Interactions between the solid Earth and climate system represent a frontier area for geoscientific research that is strongly emphasized in the International Ocean Discovery Program (IODP) Science Plan. The continental margin of India adjoining the Arabian Sea offers a unique opportunity to understand tectonic-climatic interactions and the net impact of these on weathering and erosion of the Himalaya. Scientific drilling in the Arabian Sea is designed to understand the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. The southwest monsoon is one of the most intense climatic phenomena on Earth. Its long-term development has been linked to the growth of high topography in South and Central Asia. Conversely, the tectonic evolution of the Himalaya, especially the exhumation of the Greater Himalaya, has been linked to intensification of the summer monsoon rains, as well as to plate tectonic forces. Weathering of the Himalaya has also been linked to long-term drawdown of atmospheric CO2 during the Cenozoic, culminating in the onset of Northern Hemisphere glaciation. No other part of the world has such intense links between tectonic and climatic processes. Unfortunately, these hypotheses remain largely untested because of limited information on the history of erosion and weathering recorded in the resultant sedimentary prisms. This type of data cannot be found on shore because the proximal foreland basin records are disrupted by major unconformities, and depositional ages are difficult to determine with high precision. We therefore propose to recover longer records of erosion and weathering from the Indus Fan that will allow us to understand links between paleoceanographic processes and the climatic history of the region. The latter was partially addressed by Ocean Drilling Program (ODP) Leg 117 on the Oman margin, and further studies are proposed during IODP Expedition 353 (Indian Monsoon Rainfall) that will core several sites in the Bay of Bengal. Such records can be correlated to structural geological and thermochronology data in the Himalaya and Tibetan Plateau to estimate how sediment fluxes and exhumation rates change through time. The drilling will be accomplished within a regional seismic stratigraphic framework and will for the first time permit an estimation of sediment budgets together with quantitative estimates of weathering fluxes and their variation through time. Specific goals of this expedition include 1. Testing whether the timing of the exhumation of Greater Himalaya correlates with an enhanced erosional flux and stronger chemical weathering after ~23 Ma, 2. Determining the amplitude and direction of the environmental change at 8 Ma, and 3. Dating the age of the base of the fan and the underlying basement to constrain the timing of India-Asia collision. Drilling through the fan base and into the underlying basement in the proposed area will permit additional constraints to be placed on the nature of the crust in the Laxmi Basin (Eastern Arabian Sea), which has a significant bearing on paleogeographic reconstructions along conjugate margins in the Arabian Sea and models of continental breakup on rifted volcanic margins.
more »
« less
- Award ID(s):
- 1326927
- PAR ID:
- 10233200
- Date Published:
- Journal Name:
- Scientific prospectus
- Volume:
- 355
- ISSN:
- 2332-1385
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Expedition 354 will drill a transect of holes in the Bay of Bengal to address interactions among the growth of the Himalaya and Tibet, the development of the Asian monsoon, and processes affecting the carbon cycle and global climate. Because sedimentation in the Bengal Fan responds to both climate and tectonic processes, its terrigenous sediment records the past evolution of both the Himalaya and regional climate. The histories of the Himalayan/Tibetan system and the Asian monsoon require sampling different periods of time with different levels of precision. Accordingly, we propose a transect of six holes in the fan at 8°N with two complementary objectives. (1) We will study the early stages of Himalayan erosion, which will bear on the India-Eurasia collision and the development of the Himalaya and Tibet as topographic features. We will drill a deep site (MBF-3A to ~1500 m) in the west flank of the Ninetyeast Ridge where a reflector interpreted as a Paleocene-Eocene unconformity could be reached at a reasonable depth. (2) We will study the Neogene development of the Asian monsoon and its impact on sediment supply and flux. Our east–west transect of drill sites at 8°N will include Site MBF-3A and two other 900 m penetration sites (MBF-1A and MBF-2A) to reach sediment at least as old as 10–12 m.y. Records from the Arabian Sea and the Indian subcontinent suggest that at ~7–8 Ma the intensity of the monsoon increased and C4 plants expanded. Moreover, these changes appear to be linked to changes in the erosional regime as recorded by Ocean Drilling Program Leg 116 and possibly to the tectonic evolution of southeast Asia. This transect will allow study of the extent to which a strengthening of the monsoon encompassed the Bay of Bengal, where increased rainfall, not strengthened wind, characterizes the monsoon, and will allow quantitative studies of the interrelations of climate change and sediment accumulation. In addition, three sites (MBF-4A, MBF-5A, and MBF-6A) will document how the depocenter migrated across this transect during the Pleistocene and will provide the most complete record of channel-derived terrigenous material through this time interval.more » « less
-
The Indian (southwest) summer monsoon is one of the most intense climatic phenomena on Earth, with its long-term development possibly linked to the growth of high topography in South and Central Asia. The Indian continental margin, adjoining the Arabian Sea, offers a unique opportunity to investigate tectonic–climatic interactions and the net impact of these processes on weathering and erosion of the western Himalaya. During International Ocean Discovery Program Expedition 355, two sites (U1456 and U1457) were drilled in Laxmi Basin in the eastern Arabian Sea to document the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. In addition, recovering basement from the eastern Arabian Sea provides constraints on the early rifting history of the western continental margin of India with special emphasis on continental breakup between India and the Seychelles and its relationship to the plume-related volcanism of the Deccan Plateau. Drilling and coring operations during Expedition 355 recovered sediment from Sites U1456 and U1457 in Laxmi Basin, penetrating 1109.4 and 1108.6 m below seafloor (mbsf), respectively. Drilling reached sediment dated to 13.5–17.7 Ma (late early to early middle Miocene) at Site U1456, although with a large hiatus between the lowermost sediment and overlying deposits dated at <10.9 Ma. At Site U1457, a much longer hiatus occurs near the base of the cored section, spanning from ~10.9 to ~62 Ma. At both sites, hiatuses span ~8.2–9.2 and ~3.6–5.6 Ma with a possible condensed section spanning ~2.0–2.6 Ma, although the total duration for each hiatus is slightly different between the two sites. A major submarine fan probably draining the western Himalaya and Karakoram must have been supplying sediment to the eastern Arabian Sea since at least ~17 Ma. Sand mineral assemblages indicate that the Greater Himalayan Crystalline Sequence was fully exposed to the surface by this time. Most of the recovered sediment appears to be derived from the Indus River and includes minerals that are unique to the Indus Suture Zone, in particular glaucophane and hypersthene, most likely originating from the structural base of the Kohistan arc (i.e., within the Indus Suture Zone). Pliocene sandy intervals at Site U1456 were deposited in lower fan “sheet lobe” settings, with intervals of basin–plain turbidites separated by hemipelagic muddy sections deposited during the Miocene. Site U1457 is more distal in facies, reflecting its more marginal setting. No major active lobe appears to have affected Laxmi Basin since the late early Pleistocene (~1.2–1.5 Ma). We succeeded in recovering sections spanning the 8 Ma climatic transition, when monsoon intensity is believed to have changed strongly, although the nature of this change awaits postcruise analysis. We also recovered sediment from large mass transport deposits measuring ~330 and ~190 m thick at Sites U1456 and U1457, respectively. These sections include an upper sequence of slump-folded muddy and silty rocks, as well as underlying calcarenites and limestone breccias, together with smaller amounts of volcanic clasts, all of which are likely derived from the western Indian continental shelf. Identification of similar facies on the regional seismic lines in Laxmi Basin suggests that these deposits form parts of one of the world’s largest mass transport deposits. Coring of igneous basement was achieved at Site U1457. Recovery of massive basalt and associated volcaniclastic sediment at this site should address the key questions related to rifting and volcanism associated with formation of Laxmi Basin. Geochemical analysis indicates that these are low-K, high-Mg subalkaline tholeiitic basalts and do not represent a typical mid-ocean-ridge basalt. Other observations made at the two sites during Expedition 355 provide vital constraints on the rift history of this margin. Heat flow measurements at the two drill sites were calculated to be ~57 and ~60 mW/m2. Such heat flow values are compatible with those observed in average oceanic crust of 63–84 Ma age, as well as with the presence of highly extended continental crust. Postcruise analyses of the more than ~1722 m of core will provide further information about the nature of tectonic–climatic interactions in this global type area for such studies.more » « less
-
null (Ed.)The Indian (southwest) summer monsoon is one of the most intense climatic phenomena on Earth. Its long-term development has been linked to the growth of high topography in South and Central Asia. The Indian continental margin, adjoining the Arabian Sea, offers a unique opportunity to investigate tectonic–climatic interactions and the net impact of these processes on weathering and erosion of the western Himalaya. During International Ocean Discovery Program Expedition 355, two sites (U1456 and U1457) were drilled in Laxmi Basin in the eastern Arabian Sea to document the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. In addition, recovering basement from the eastern Arabian Sea provides constraints on the early rifting history of the western continental margin of India with special emphasis on continental breakup between India and the Seychelles and its relationship to the plume-related volcanism of the Deccan Plateau. Drilling and coring operations during Expedition 355 recovered sediment from Sites U1456 and U1457 in the Laxmi Basin, penetrating 1109.4 and 1108.6 m below seafloor (mbsf), respectively. Drilling reached sediment dated to 13.5–17.7 Ma (late early to early middle Miocene) at Site U1456, although with a large hiatus between the lowermost sediment and overlying deposits dated to <10.9 Ma. At Site U1457, a much longer hiatus occurs near the base of the cored section, spanning from 10.9 to ~62 Ma. At both sites, hiatuses span ~8.2–9.2 and ~3.6–5.6 Ma, with a possible condensed section spanning ~2.0–2.6 Ma, although the total duration for each hiatus is slightly different between the two sites. A major submarine fan draining the western Himalaya and Karakoram must have been supplying sediment to the eastern Arabian Sea since at least ~17 Ma. Sand mineral assemblages indicate that the Greater Himalayan Crystalline Sequence was fully exposed to the surface by this time. Most of the recovered sediment appears to be derived from the Indus River and includes minerals that are unique to the Indus Suture Zone, in particular glaucophane and hypersthene, most likely originating from the structural base of the Kohistan arc. Pliocene sandy intervals at Site U1456 were deposited in lower fan “sheet lobe” settings, with intervals of basin plain turbidites separated by hemipelagic muddy sections deposited during the Miocene. Site U1457 is more distal in facies, reflecting its more marginal setting. No major active lobe appears to have affected the Laxmi Basin since the Middle Pleistocene (~1.2 Ma). We succeeded in recovering sections spanning the 8 Ma climatic transition, when monsoon intensity is believed to have changed strongly, although the nature of this change awaits postcruise analysis. We also recovered sediment from a large mass transport deposit measuring ~330 and ~190 m thick at Sites U1456 and U1457, respectively. This section includes an upper sequence of slump-folded muddy and silty rocks, as well as underlying calcarenites and limestone breccias, together with smaller amounts of volcanic clasts, all of which are likely derived from the western Indian continental shelf. Identification of similar facies on the regional seismic lines in Laxmi Basin suggests that these deposits form parts of one of the world’s largest mass transport deposits. Coring of igneous basement was successful at Site U1457. Recovery of massive basalt and associated volcaniclastic sediment at this site should address the key questions related to rifting and volcanism associated with formation of Laxmi Basin. Geochemical analysis is required to understand the petrogenesis and thus the tectonic setting of volcanism that will reveal whether it is oceanic basalt or volcanic rock contaminated by underlying continental crust or continental flood basalt. However, the fact that the lavas are massive and have few vesicles implies water depths of eruption likely deeper than 2000 m. This precludes opening of the basin in the presence of a major mantle thermal anomaly, such as that associated with the Deccan Large Igneous Province. Other observations made at the two sites during Expedition 355 provide vital constraints on the rift history of this margin. Heat flow measurements at the two drill sites were calculated to be ~57 and ~60 mW/m2. Such heat flow values are compatible with those observed in average oceanic crust of 63–84 Ma age, as well as with the presence of highly extended continental crust. Postcruise analyses of the more than ~1722 m of core will provide further information about the nature of tectonic–climatic interactions in this global type area for such studies.more » « less
-
null (Ed.)Scientific ocean drilling (Deep Sea Drilling Project [DSDP], Ocean Drilling Program [ODP], and Integrated Ocean Drilling Program) has never taken place in the Bay of Bengal north of 9°N. Thus, the core region of summer monsoon precipitation has never been investigated. DSDP Leg 22 (1974) and ODP Leg 121 (1989) drilled the southernmost region (5°–9°N), capturing the distal end of the summer monsoon influence. India’s partnership in the International Ocean Discovery Program (IODP) provides an opportunity to investigate this key northern region. IODP Expedition 353 seeks to recover Upper Cretaceous–Holocene sediment sections that record erosion and runoff signals from river input to the Bay of Bengal as well as the resulting north–south surface water salinity gradient. Analysis of sediment sections from the Mahanadi Basin (northeast Indian margin), the Nicobar-Andaman Basin (Andaman Sea), and the northern Ninetyeast Ridge (southern Bay of Bengal) will be used to understand the physical mechanisms underlying changes in monsoonal precipitation, erosion, and run-off across timescales from millennial through tectonic. These sites will provide crucial new information within which to interpret differences among existing results from previous monsoon-themed drilling expeditions in the Arabian Sea (ODP Leg 117), the South China Sea (ODP Leg 184), and the Sea of Japan (Integrated Ocean Drilling Program Expedition 346). These goals directly address challenges in the “Climate and Ocean Change” theme of the IODP Science Plan.more » « less
An official website of the United States government

