Abstract The Bengal Basin preserves the erosional signals of coupled tectonic‐climatic change during late Cenozoic development of the Himalayan orogen, yet regional correlation and interpretation of these signals remains incomplete. We present a new geologic map of fluvial‐deltaic deposits of the Indo‐Burman Ranges (IBR), five detrital zircon fission track analyses, and twelve high‐n detrital zircon U‐Pb age distributions (dzUPb) from the Barail (late Eocene–early Miocene), Surma (early–late Miocene), and Tipam (late Miocene–Pliocene) Groups of the ancestral Brahmaputra delta. We use dzUPb statistical tests to correlate the IBR units with equivalent age strata throughout the Bengal Basin. An influx of trans‐Himalayan sediment and the first appearance of ∼50 Ma grains of the Gangdese batholith in the lower Surma Group (∼18–15 Ma) records the early Miocene arrival of the ancestral Brahmaputra delta to the Bengal Basin. Contributions from Himalayan sources systematically decrease up section through the late Miocene as the contribution of Trans‐Himalayan Arc sources increases. The Miocene (∼18–8 Ma) deposition of the Surma Group records upstream expansion of the ancestral Brahmaputra River into southeastern Tibet. Late Miocene (<8 Ma) progradation of the fluvial part of the delta (Tipam Group) routed trans‐Himalayan sediment over the shelf edge to the Nicobar Fan. We propose that Miocene progradation of the ancestral Brahmaputra delta reflects increasing rates of erosion and sea level fall during intensification of the South Asian Monsoon after the Miocene Climate Optimum, contemporaneous with a pulse of tectonic uplift of the Himalayan hinterland and Tibet.
more »
« less
Expedition 354 Scientific Prospectus: Bengal Fan
Expedition 354 will drill a transect of holes in the Bay of Bengal to address interactions among the growth of the Himalaya and Tibet, the development of the Asian monsoon, and processes affecting the carbon cycle and global climate. Because sedimentation in the Bengal Fan responds to both climate and tectonic processes, its terrigenous sediment records the past evolution of both the Himalaya and regional climate. The histories of the Himalayan/Tibetan system and the Asian monsoon require sampling different periods of time with different levels of precision. Accordingly, we propose a transect of six holes in the fan at 8°N with two complementary objectives. (1) We will study the early stages of Himalayan erosion, which will bear on the India-Eurasia collision and the development of the Himalaya and Tibet as topographic features. We will drill a deep site (MBF-3A to ~1500 m) in the west flank of the Ninetyeast Ridge where a reflector interpreted as a Paleocene-Eocene unconformity could be reached at a reasonable depth. (2) We will study the Neogene development of the Asian monsoon and its impact on sediment supply and flux. Our east–west transect of drill sites at 8°N will include Site MBF-3A and two other 900 m penetration sites (MBF-1A and MBF-2A) to reach sediment at least as old as 10–12 m.y. Records from the Arabian Sea and the Indian subcontinent suggest that at ~7–8 Ma the intensity of the monsoon increased and C4 plants expanded. Moreover, these changes appear to be linked to changes in the erosional regime as recorded by Ocean Drilling Program Leg 116 and possibly to the tectonic evolution of southeast Asia. This transect will allow study of the extent to which a strengthening of the monsoon encompassed the Bay of Bengal, where increased rainfall, not strengthened wind, characterizes the monsoon, and will allow quantitative studies of the interrelations of climate change and sediment accumulation. In addition, three sites (MBF-4A, MBF-5A, and MBF-6A) will document how the depocenter migrated across this transect during the Pleistocene and will provide the most complete record of channel-derived terrigenous material through this time interval.
more »
« less
- Award ID(s):
- 1326927
- PAR ID:
- 10233207
- Date Published:
- Journal Name:
- Scientific prospectus
- Volume:
- 354
- ISSN:
- 2332-1385
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Site U1450 (proposed Site MBF-2A) occupies a central position at 8°0.42′N and 87°40.25′E in the east–west transect across the Bengal Fan at 8°N. It is located at equal distance from Site U1451 on the flank of the Ninetyeast Ridge and Site U1455 on the flank of the 85°E Ridge. The overall thickness of the fan reaches ~4 km at this location (Curray et al., 2003). Neogene sediment thickness decreases toward the two ridges, which is likely the result of ongoing deformation on both ridges during the Neogene (Schwenk and Spiess, 2009). At this central position of the transect, the upper Miocene and Pliocene–Pleistocene sections of the fan appear to be most expanded and are inferred to contain a higher resolution record, as well as accumulating, on average, coarser grained material. The shallow section at this site is one of the seven ~200 m deep sections along the 8°N transect that constrain the Middle Bengal Fan architecture in space, time, and sediment delivery rate during the Pleistocene. The deeper section at this site will document the delivery mechanisms of the fan and the climatically and tectonically influenced sediment supply from the Himalaya during the Neogene. Changes in the source regions in response to tectonic and climatic evolution of the Himalaya are expected to be reflected in the sediment’s mineralogical and geochemical compositions, the geochronological data, and in accumulation rates across the transect.more » « less
-
Site U1451 (proposed Site MBF-3A) is the easternmost site of our Bengal Fan transect at 8°N and was the only one aimed at coring the oldest part of the fan. The site is located above the western flank of the Ninetyeast Ridge at 8°0.42′N, 88°44.50′E in 3607.3 m water depth. Seismic data show that the overall fan section is condensed at Site U1451 compared to the axial part of the fan because of ongoing deformation along the Ninetyeast Ridge since the Miocene (Schwenk and Spiess, 2009). The drilling objective was to recover the complete fan section down to a seismic unconformity, which is believed to indicate the onset of fan deposition at this location. Site U1451 also contributes to the Miocene–Pliocene transect of three ~900 m deep holes documenting Himalayan erosion and paleoenvironment. Finally, the upper section of the site is part of the seven-site transect drilled to investigate late Pliocene to recent depocenter migration and overall fan sedimentation.more » « less
-
null (Ed.)Interactions between the solid Earth and climate system represent a frontier area for geoscientific research that is strongly emphasized in the International Ocean Discovery Program (IODP) Science Plan. The continental margin of India adjoining the Arabian Sea offers a unique opportunity to understand tectonic-climatic interactions and the net impact of these on weathering and erosion of the Himalaya. Scientific drilling in the Arabian Sea is designed to understand the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. The southwest monsoon is one of the most intense climatic phenomena on Earth. Its long-term development has been linked to the growth of high topography in South and Central Asia. Conversely, the tectonic evolution of the Himalaya, especially the exhumation of the Greater Himalaya, has been linked to intensification of the summer monsoon rains, as well as to plate tectonic forces. Weathering of the Himalaya has also been linked to long-term drawdown of atmospheric CO2 during the Cenozoic, culminating in the onset of Northern Hemisphere glaciation. No other part of the world has such intense links between tectonic and climatic processes. Unfortunately, these hypotheses remain largely untested because of limited information on the history of erosion and weathering recorded in the resultant sedimentary prisms. This type of data cannot be found on shore because the proximal foreland basin records are disrupted by major unconformities, and depositional ages are difficult to determine with high precision. We therefore propose to recover longer records of erosion and weathering from the Indus Fan that will allow us to understand links between paleoceanographic processes and the climatic history of the region. The latter was partially addressed by Ocean Drilling Program (ODP) Leg 117 on the Oman margin, and further studies are proposed during IODP Expedition 353 (Indian Monsoon Rainfall) that will core several sites in the Bay of Bengal. Such records can be correlated to structural geological and thermochronology data in the Himalaya and Tibetan Plateau to estimate how sediment fluxes and exhumation rates change through time. The drilling will be accomplished within a regional seismic stratigraphic framework and will for the first time permit an estimation of sediment budgets together with quantitative estimates of weathering fluxes and their variation through time. Specific goals of this expedition include 1. Testing whether the timing of the exhumation of Greater Himalaya correlates with an enhanced erosional flux and stronger chemical weathering after ~23 Ma, 2. Determining the amplitude and direction of the environmental change at 8 Ma, and 3. Dating the age of the base of the fan and the underlying basement to constrain the timing of India-Asia collision. Drilling through the fan base and into the underlying basement in the proposed area will permit additional constraints to be placed on the nature of the crust in the Laxmi Basin (Eastern Arabian Sea), which has a significant bearing on paleogeographic reconstructions along conjugate margins in the Arabian Sea and models of continental breakup on rifted volcanic margins.more » « less
-
null (Ed.)International Ocean Discovery Expedition 354 to 8°N in the Bay of Bengal drilled a seven site, 320 km long transect across the Bengal Fan. Three deep-penetration and an additional four shallow holes give a spatial overview of the primarily turbiditic depositional system that comprises the Bengal deep-sea fan. Sediments originate from Himalayan rivers, documenting terrestrial changes of Himalayan erosion and weathering, and are transported through a delta and shelf canyon, supplying turbidity currents loaded with a full spectrum of grain sizes. Mostly following transport channels, sediments deposit on and between levees while depocenters laterally shift over hundreds of kilometers on millennial timescales. During Expedition 354, these deposits were documented in space and time, and the recovered sediments have Himalayan mineralogical and geochemical signatures relevant for reconstructing time series of erosion, weathering, and changes in source regions, as well as impacts on the global carbon cycle. Miocene shifts in terrestrial vegetation, sediment budget, and style of sediment transport were tracked. Expedition 354 has extended the record of early fan deposition by 10 My into the late Oligocene.more » « less
An official website of the United States government

