This paper describes the application of the code generated by the CAMPARY software to accelerate the solving of linear systems in the least squares sense on Graphics Processing Units (GPUs), in double double, quad double, and octo double precision. The goal is to use accelerators to offset the cost overhead caused by multiple double precision arithmetic. For the blocked Householder QR and the back substitution, of interest are those dimensions at which teraflop performance is attained. The other interesting question is the cost overhead factor that appears each time the precision is doubled. Experimental results are reported on five different NVIDIA GPUs, with a particular focus on the P100 and the V100, both capable of teraflop performance. Thanks to the high Compute to Global Memory Access (CGMA) ratios of multiple double arithmetic, teraflop performance is already attained running the double double QR on 1,024-by-1,024 matrices, both on the P100 and the V100. For the back substitution, the dimension of the upper triangular system must be as high as 17,920 to reach one teraflops on the V100, in quad double precision, and then taking only the times spent by the kernels into account. The lower performance of the back substitution in small dimensions does not prevent teraflop performance of the solver at dimension 1,024, as the time for the QR decomposition dominates. In doubling the precision from double double to quad double and from quad double to octo double, the observed cost overhead factors are lower than the factors predicted by the arithmetical operation counts. This observation correlates with the increased performance for increased precision, which can again be explained by the high CGMA ratios.
more »
« less
Parallel Software to Offset the Cost of Higher Precision
Hardware double precision is often insufficient to solve large scientific problems accurately. Computing in higher precision defined by software causes significant computational overhead. The application of parallel algorithms compensates for this overhead. Newton's method to develop power series expansions of algebraic space curves is the use case for this application.
more »
« less
- Award ID(s):
- 1854513
- PAR ID:
- 10233234
- Date Published:
- Journal Name:
- ACM SIGAda Ada Letters
- Volume:
- 40
- Issue:
- 2
- ISSN:
- 1094-3641
- Page Range / eLocation ID:
- 59 to 64
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The data precision can significantly affect the accuracy and overhead metrics of hardware accelerators for different applications such as artificial neural networks (ANNs). This paper evaluates the inference and training of multi-layer perceptrons (MLPs), in which initially IEEE standard floating-point (FP) precisions (half, single and double) are utilized separately and then compared with mixed-precision FP formats. The mixed-precision calculations are investigated for three critical propagation modules (activation functions, weight updates, and accumulation units). Compared with applying a simple low-precision format, the mixed-precision format prevents an accuracy loss and the occurrence of overflow/underflow in the MLPs while potentially incurring in less hardware overhead in terms of area/power. As the multiply-accumulation is the most dominant operation in trending ANNs, a fully pipelined hardware implementation for the fused multiply-add units is proposed for different IEEE FP formats to achieve a very high operating frequency.more » « less
-
We present 3MileBeach, a tracing and fault injection platform designed for microservice-based architectures. 3Mile-Beach interposes on the message serialization libraries that are ubiquitous in this environment, avoiding the application code instrumentation that tracing and fault injection infrastructures typically require. 3MileBeach provides message-level distributed tracing at less than 50% of the overhead of the state-of-the-art tracing frameworks, and fault injection that allows higher precision experiments than existing solutions. We measure the overhead of 3MileBeach as a tracer and its efficacy as a fault injector. We qualitatively measure its promise as a platform for tuning and debugging by sharing concrete use cases in the context of bottleneck identification, performance tuning, and bug finding. Finally, we use 3MileBeach to perform a novel type of fault injection - Temporal Fault Injection (TFI), which more precisely controls individual inter-service message flow with temporal prerequisites, and makes it possible to catch an entirely new class of fault tolerance bugs.more » « less
-
Power modeling is an essential building block for computer systems in support of energy optimization, energy profiling, and energy-aware application development. We introduce VESTA, a novel approach to modeling the power consumption of applications with one key insight: language runtime events are often correlated with a sustained level of power consumption. When compared with the established approach of power modeling based on hardware performance counters (HPCs), VESTA has the benefit of solely requiring application-scoped information and enabling a higher level of explainability, while achieving comparable or even higher precision. Through experiments performed on 37 real-world applications on the Java Virtual Machine (JVM), we find the power model built by VESTA is capable of predicting energy consumption with a mean absolute percentage error of 1.56%, while the monitoring of language runtime events incurs small performance and energy overhead.more » « less
-
In the Artificial Intelligence of Things (AIoT) era, always-on intelligent and self-powered visual perception systems have gained considerable attention and are widely used. Thus, this paper proposes TizBin, a low-power processing in-sensor scheme with event and object detection capabilities to eliminate power costs of data conversion and transmission and enable data-intensive neural network tasks. Once the moving object is detected, TizBin architecture switches to the high-power object detection mode to capture the image. TizBin offers several unique features, such as analog convolutions enabling low-precision ternary weight neural networks (TWNN) to mitigate the overhead of analog buffer and analog-to-digital converters. Moreover, TizBin exploits non-volatile magnetic RAMs to store NN’s weights, remarkably reducing static power consumption. Our circuit-to-application co-simulation results for TWNNs demonstrate minor accuracy degradation on various image datasets, while TizBin achieves a frame rate of 1000 and efficiency of ∼1.83 TOp/s/W.more » « less
An official website of the United States government

