skip to main content

Title: A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5
Abstract. Land models are essential tools for understanding and predicting terrestrial processes and climate–carbon feedbacks in the Earth system, but uncertainties in their future projections are poorly understood. Improvements in physical process realism and the representation of human influence arguably make models more comparable to reality but also increase the degrees of freedom in model configuration, leading to increased parametric uncertainty in projections. In this work we design and implement a machine learning approach to globally calibrate a subset of the parameters of the Community Land Model, version 5 (CLM5) to observations of carbon and water fluxes. We focus on parameters controlling biophysical features such as surface energy balance, hydrology, and carbon uptake. We first use parameter sensitivity simulations and a combination of objective metrics including ranked global mean sensitivity to multiple output variables and non-overlapping spatial pattern responses between parameters to narrow the parameter space and determine a subset of important CLM5 biophysical parameters for further analysis. Using a perturbed parameter ensemble, we then train a series of artificial feed-forward neural networks to emulate CLM5 output given parameter values as input. We use annual mean globally aggregated spatial variability in carbon and water fluxes as our emulation and calibration targets. Validation and out-of-sample tests are used to assess the predictive skill of the networks, and we utilize permutation feature importance and partial dependence methods to better interpret the results. The trained networks are then used to estimate global optimal parameter values with greater computational efficiency than achieved by hand tuning efforts and increased spatial scale relative to previous studies optimizing at a single site. By developing this methodology, our framework can help quantify the contribution of parameter uncertainty to overall uncertainty in land model projections.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Statistical Climatology, Meteorology and Oceanography
Page Range / eLocation ID:
223 to 244
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Terrestrial biosphere models can help identify physical processes that control carbon dynamics, including land‐atmosphere CO2fluxes, and have the potential to project the terrestrial ecosystem response to changing climate. It is important to identify ecosystem processes most responsible for model predictive uncertainty and design improved model representation and observational system studies to reduce that uncertainty. Here we identified model parameters that contribute the most uncertainty to long‐term (~100 years) projections of net ecosystem exchange, net primary production, and aboveground biomass within a mechanistic terrestrial biosphere model (Ecosystem Demography, version 2.1) ED2. An uncertainty analysis identified parameters that represent the quantum efficiency of light to photosynthetic conversion, leaf respiration and soil‐plant water transfer as the highest contributors to model uncertainty regardless of time frame (annual, decadal, and centennial) and output (e.g., net ecosystem exchange, net primary production, aboveground biomass). Contrary to expectations, the contribution of successional processes related to reproduction, competition, and mortality did not increase as the time scale increased. These findings suggest that uncertainty in the parameters governing short‐term ecosystem processes remains the most significant bottleneck to reducing predictive uncertainty. Key actions to reduce parameter uncertainty include more leaf‐level trait measurements across multiple sites for quantum efficiency and leaf respiration rate. Further, the empirical representation of soil‐plant water transfer should be replaced with a mechanistic, hydraulic representation of water flow, which can be constrained with direct measurements. This analysis focused on aboveground ecosystem processes. The impact of belowground carbon cycling, initial conditions, and meteorological forcing should be addressed in future studies.

    more » « less
  2. Current biogeochemical models produce carbon–climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first‐order or Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data with high‐quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics‐function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions. 
    more » « less
  3. In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute the posterior distribution of the critical hydrological parameters that are subject to great uncertainty in the Community Land Model (CLM) for a given value of the output LH. The unknown parameters include those that have been identified as the most influential factors on the simulations of surface and subsurface runoff, latent and sensible heat fluxes, and soil moisture in CLM4.0. We set up the inversion problem in the Bayesian framework in two steps: (i) building a surrogate model expressing the input–output mapping, and (ii) performing inverse modeling and computing the posterior distributions of the input parameters using observation data for a given value of the output LH. The development of the surrogate model is carried out with a Bayesian procedure based on the variable selection methods that use gPC expansions. Our approach accounts for bases selection uncertainty and quantifies the importance of the gPC terms, and, hence, all of the input parameters, via the associated posterior probabilities. 
    more » « less
  4. Abstract Studies exploring long-term energy system transitions rely on resource cost-supply curves derived from estimates of renewable energy (RE) potentials to generate wind and solar power projections. However, estimates of RE potentials are characterized by large uncertainties stemming from methodological assumptions that vary across studies, including factors such as the suitability of land and the performance and configuration of technology. Based on a synthesis of modeling approaches and parameter values used in prior studies, we explore the implications of these uncertain assumptions for onshore wind and solar photovoltaic electricity generation projections globally using the Global Change Analysis Model. We show that variability in parametric assumptions related to land use (e.g. land suitability) are responsible for the most substantial uncertainty in both wind and solar generation projections. Additionally, assumptions about the average turbine installation density and turbine technology are responsible for substantial uncertainty in wind generation projections. Under scenarios that account for climate impacts on wind and solar energy, we find that these parametric uncertainties are far more significant than those emerging from differences in climate models and scenarios in a global assessment, but uncertainty surrounding climate impacts (across models and scenarios) have significant effects regionally, especially for wind. Our analysis suggests the need for studies focusing on long-term energy system transitions to account for this uncertainty. 
    more » « less
  5. As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near Utqiaġvik to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change. 
    more » « less