Title: A Graph-constrained Changepoint Detection Approach for ECG Segmentation
Electrocardiogram (ECG) signal is the most commonly used non-invasive tool in the assessment of cardiovascular diseases. Segmentation of the ECG signal to locate its constitutive waves, in particular the R-peaks, is a key step in ECG processing and analysis. Over the years, several segmentation and QRS complex detection algorithms have been proposed with different features; however, their performance highly depends on applying preprocessing steps which makes them unreliable in realtime data analysis of ambulatory care settings and remote monitoring systems, where the collected data is highly noisy. Moreover, some issues still remain with the current algorithms in regard to the diverse morphological categories for the ECG signal and their high computation cost. In this paper, we introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of Rpeak positions without employing any preprocessing step. The proposed model guarantees to compute the globally optimal changepoint detection solution. It is also generic in nature and can be applied to other time-series biomedical signals. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55 which are comparable to other state-of-the-art approaches. more »« less
Fotoohinasab, Atiyeh; Hocking, Toby; Afghah, Fatemeh
(, IEEE Asilomar Conference on Signals, Systems, and Computers ASILOMAR)
null
(Ed.)
This study presents a new viewpoint on ECG signal analysis by applying a graph-based changepoint detection model to locate R-peak positions. This model is based on a new graph learning algorithm to learn the constraint graph given the labeled ECG data. The proposed learning algorithm starts with a simple initial graph and iteratively edits the graph so that the final graph has the maximum accuracy in R-peak detection. We evaluate the performance of the algorithm on the MIT-BIH Arrhythmia Database. The evaluation results demonstrate that the proposed method can obtain comparable results to other state-of-the-art approaches. The proposed method achieves the overall sensitivity of Sen = 99.64%, positive predictivity of PPR = 99.71%, and detection error rate of DER = 0.19.
Dai, B.; Shen, X.; Li, C.; Chen, C.; Pan, W.
(, Annals of applied statistics)
critical to reveal a blackbox model’s decision-making process from raw data to prediction. In this article, we use two real datasets, the MNIST handwritten digits and MIT-BIH Electrocardiogram (ECG) signals, to motivate key characteristics of discriminative features, namely adaptiveness, predictive importance and effectiveness. Then, we develop a localization framework based on adversarial attacks to effectively localize discriminative features. In contrast to existing heuristic methods, we also provide a statistically guaranteed interpretability of the localized features by measuring a generalized partial R2. We apply the proposed method to the MNIST dataset and the MIT-BIH dataset with a convolutional auto-encoder. In the first, the compact image regions localized by the proposed method are visually appealing. Similarly, in the second, the identified ECG features are biologically plausible and consistent with cardiac electrophysiological principles while locating subtle anomalies in a QRS complex that may not be discernible by the naked eye. Overall, the proposed method compares favorably with state-of-the-art competitors. Accompanying this paper is a Python library dnn-locate that implements the proposed approach.
The COVID-19 pandemic has intensified the need for home-based cardiac health monitoring systems. Despite advancements in electrocardiograph (ECG) and phonocardiogram (PCG) wearable sensors, accurate heart sound segmentation algorithms remain understudied. Existing deep learning models, such as convolutional neural networks (CNN) and recurrent neural networks (RNN), struggle to segment noisy signals using only PCG data. We propose a two-step heart sound segmentation algorithm that analyzes synchronized ECG and PCG signals. The first step involves heartbeat detection using a CNN-LSTM-based model on ECG data, and the second step focuses on beat-wise heart sound segmentation with a 1D U-Net that incorporates multi-modal inputs. Our method leverages temporal correlation between ECG and PCG signals to enhance segmentation performance. To tackle the label-hungry issue in AI-supported biomedical studies, we introduce a segment-wise contrastive learning technique for signal segmentation, overcoming the limitations of traditional contrastive learning methods designed for classification tasks. We evaluated our two-step algorithm using the PhysioNet 2016 dataset and a private dataset from Bayland Scientific, obtaining a 96.43 F1 score on the former. Notably, our segment-wise contrastive learning technique demonstrated effective performance with limited labeled data. When trained on just 1% of labeled PhysioNet data, the model pre-trained on the full unlabeled dataset only dropped 2.88 in the F1 score, outperforming the SimCLR method. Overall, our proposed algorithm and learning technique present promise for improving heart sound segmentation and reducing the need for labeled data.
Le, Minh Duc; Singh Rathour, Vidhiwar; Truong, Quang Sang; Mai, Quan; Brijesh, Patel; Le, Ngan
(, 2021 IEEE International Conference on Biomedical and Health Informatics (BHI))
The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. Deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), have excelled in a variety of intelligent tasks including biomedical and health informatics. Most the existing approaches either partition the ECG time series into a set of segments and apply 1D-CNNs or divide the ECG signal into a set of spectrogram images and apply 2D-CNNs. These studies, however, suffer from the limitation that temporal dependencies between 1D segments or 2D spectrograms are not considered during network construction. Furthermore, meta-data including gender and age has not been well studied in these researches. To address those limitations, we propose a multi-module Recurrent Convolutional Neural Networks (RCNNs) consisting of both CNNs to learn spatial representation and Recurrent Neural Networks (RNNs) to model the temporal relationship. Our multi-module RCNNs architecture is designed as an end-to-end deep framework with four modules: (i) timeseries module by 1D RCNNs which extracts spatio-temporal information of ECG time series; (ii) spectrogram module by 2D RCNNs which learns visual-temporal representation of ECG spectrogram ; (iii) metadata module which vectorizes age and gender information; (iv) fusion module which semantically fuses the information from three above modules by a transformer encoder. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH) under different network configurations. The experimental results have proved that our proposed multi-module RCNNs with transformer encoder achieves the state-of-the-art with 99.14% F1 score and 98.29% accuracy.
Abdeldayem, Sara S.; Bourlai, Thirimachos
(, International Conference on Pattern Recognition (ICPR))
Arrhythmia is an abnormal heart rhythm that occurs due to the improper operation of the electrical impulses that coordinate the heartbeats. It is one of the most well-known heart conditions (including coronary artery disease, heart failure etc.) that is experienced by millions of people around the world. While there are several types of arrhythmias, not all of them are dangerous or harmful. However, there are arrhythmias that can often lead to death in minutes (e.g, ventricular fibrillation and ventricular tachycardia) even in young people. Thus, the detection of arrhythmia is critical for stopping and reversing its progression and for increasing longevity and life quality. While a doctor can perform different heart-monitoring tests specific to arrhythmias, the electrocardiogram (ECG) is one of the most common ones used either independently or in combination with other tests (to only detect, e.g. echocardiogram, or trigger arrhythmia and, then, detect, e.g. stress test). We propose a machine learning approach that augments the traditional arrhythmia detection approaches via our automatic arrhythmia classification system. It utilizes the texture of the ECG signal in both the temporal and spectro-temporal domains to detect and classify four types of heartbeats. The original ECG signal is first preprocessed, and then, the R-peaks associated with heartbeat estimation are identified. Next, 1D local binary patterns (LBP) in the temporal domain are utilized, while 2D LBPs and texture-based features extracted by a grayscale co-occurrence matrix (GLCM) are utilized in the spectro-temporal domain using the short-time Fourier transform (STFT) and Morse wavelets. Finally, different classifiers, as well as different ECG lead configurations are examined before we determine our proposed time-frequency SVM model, which obtains a maximum accuracy of 99.81%, sensitivity of 98.17%, and specificity of 99.98% when using a 10 cross-validation on the MIT-BIH database.
Fotoohinasab, Atiyeh, Hocking, Toby, and Afghah, Fatemeh. A Graph-constrained Changepoint Detection Approach for ECG Segmentation. Retrieved from https://par.nsf.gov/biblio/10233270. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) . Web. doi:10.1109/EMBC44109.2020.9175333.
Fotoohinasab, Atiyeh, Hocking, Toby, & Afghah, Fatemeh. A Graph-constrained Changepoint Detection Approach for ECG Segmentation. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), (). Retrieved from https://par.nsf.gov/biblio/10233270. https://doi.org/10.1109/EMBC44109.2020.9175333
Fotoohinasab, Atiyeh, Hocking, Toby, and Afghah, Fatemeh.
"A Graph-constrained Changepoint Detection Approach for ECG Segmentation". 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (). Country unknown/Code not available. https://doi.org/10.1109/EMBC44109.2020.9175333.https://par.nsf.gov/biblio/10233270.
@article{osti_10233270,
place = {Country unknown/Code not available},
title = {A Graph-constrained Changepoint Detection Approach for ECG Segmentation},
url = {https://par.nsf.gov/biblio/10233270},
DOI = {10.1109/EMBC44109.2020.9175333},
abstractNote = {Electrocardiogram (ECG) signal is the most commonly used non-invasive tool in the assessment of cardiovascular diseases. Segmentation of the ECG signal to locate its constitutive waves, in particular the R-peaks, is a key step in ECG processing and analysis. Over the years, several segmentation and QRS complex detection algorithms have been proposed with different features; however, their performance highly depends on applying preprocessing steps which makes them unreliable in realtime data analysis of ambulatory care settings and remote monitoring systems, where the collected data is highly noisy. Moreover, some issues still remain with the current algorithms in regard to the diverse morphological categories for the ECG signal and their high computation cost. In this paper, we introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of Rpeak positions without employing any preprocessing step. The proposed model guarantees to compute the globally optimal changepoint detection solution. It is also generic in nature and can be applied to other time-series biomedical signals. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55 which are comparable to other state-of-the-art approaches.},
journal = {2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)},
author = {Fotoohinasab, Atiyeh and Hocking, Toby and Afghah, Fatemeh},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.