skip to main content


This content will become publicly available on October 1, 2024

Title: Data-Adaptive Discriminative Feature Localization with Statistically Guaranteed Interpretation
critical to reveal a blackbox model’s decision-making process from raw data to prediction. In this article, we use two real datasets, the MNIST handwritten digits and MIT-BIH Electrocardiogram (ECG) signals, to motivate key characteristics of discriminative features, namely adaptiveness, predictive importance and effectiveness. Then, we develop a localization framework based on adversarial attacks to effectively localize discriminative features. In contrast to existing heuristic methods, we also provide a statistically guaranteed interpretability of the localized features by measuring a generalized partial R2. We apply the proposed method to the MNIST dataset and the MIT-BIH dataset with a convolutional auto-encoder. In the first, the compact image regions localized by the proposed method are visually appealing. Similarly, in the second, the identified ECG features are biologically plausible and consistent with cardiac electrophysiological principles while locating subtle anomalies in a QRS complex that may not be discernible by the naked eye. Overall, the proposed method compares favorably with state-of-the-art competitors. Accompanying this paper is a Python library dnn-locate that implements the proposed approach.  more » « less
Award ID(s):
1952539
NSF-PAR ID:
10428953
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annals of applied statistics
ISSN:
1941-7330
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Electrocardiogram (ECG) signal is the most commonly used non-invasive tool in the assessment of cardiovascular diseases. Segmentation of the ECG signal to locate its constitutive waves, in particular the R-peaks, is a key step in ECG processing and analysis. Over the years, several segmentation and QRS complex detection algorithms have been proposed with different features; however, their performance highly depends on applying preprocessing steps which makes them unreliable in realtime data analysis of ambulatory care settings and remote monitoring systems, where the collected data is highly noisy. Moreover, some issues still remain with the current algorithms in regard to the diverse morphological categories for the ECG signal and their high computation cost. In this paper, we introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of Rpeak positions without employing any preprocessing step. The proposed model guarantees to compute the globally optimal changepoint detection solution. It is also generic in nature and can be applied to other time-series biomedical signals. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55 which are comparable to other state-of-the-art approaches. 
    more » « less
  2. Arrhythmia is an abnormal heart rhythm that occurs due to the improper operation of the electrical impulses that coordinate the heartbeats. It is one of the most well-known heart conditions (including coronary artery disease, heart failure etc.) that is experienced by millions of people around the world. While there are several types of arrhythmias, not all of them are dangerous or harmful. However, there are arrhythmias that can often lead to death in minutes (e.g, ventricular fibrillation and ventricular tachycardia) even in young people. Thus, the detection of arrhythmia is critical for stopping and reversing its progression and for increasing longevity and life quality. While a doctor can perform different heart-monitoring tests specific to arrhythmias, the electrocardiogram (ECG) is one of the most common ones used either independently or in combination with other tests (to only detect, e.g. echocardiogram, or trigger arrhythmia and, then, detect, e.g. stress test). We propose a machine learning approach that augments the traditional arrhythmia detection approaches via our automatic arrhythmia classification system. It utilizes the texture of the ECG signal in both the temporal and spectro-temporal domains to detect and classify four types of heartbeats. The original ECG signal is first preprocessed, and then, the R-peaks associated with heartbeat estimation are identified. Next, 1D local binary patterns (LBP) in the temporal domain are utilized, while 2D LBPs and texture-based features extracted by a grayscale co-occurrence matrix (GLCM) are utilized in the spectro-temporal domain using the short-time Fourier transform (STFT) and Morse wavelets. Finally, different classifiers, as well as different ECG lead configurations are examined before we determine our proposed time-frequency SVM model, which obtains a maximum accuracy of 99.81%, sensitivity of 98.17%, and specificity of 99.98% when using a 10 cross-validation on the MIT-BIH database. 
    more » « less
  3. null (Ed.)
    This study presents a new viewpoint on ECG signal analysis by applying a graph-based changepoint detection model to locate R-peak positions. This model is based on a new graph learning algorithm to learn the constraint graph given the labeled ECG data. The proposed learning algorithm starts with a simple initial graph and iteratively edits the graph so that the final graph has the maximum accuracy in R-peak detection. We evaluate the performance of the algorithm on the MIT-BIH Arrhythmia Database. The evaluation results demonstrate that the proposed method can obtain comparable results to other state-of-the-art approaches. The proposed method achieves the overall sensitivity of Sen = 99.64%, positive predictivity of PPR = 99.71%, and detection error rate of DER = 0.19. 
    more » « less
  4. The automatic classification of electrocardiogram (ECG) signals has played an important role in cardiovascular diseases diagnosis and prediction. Deep neural networks (DNNs), particularly Convolutional Neural Networks (CNNs), have excelled in a variety of intelligent tasks including biomedical and health informatics. Most the existing approaches either partition the ECG time series into a set of segments and apply 1D-CNNs or divide the ECG signal into a set of spectrogram images and apply 2D-CNNs. These studies, however, suffer from the limitation that temporal dependencies between 1D segments or 2D spectrograms are not considered during network construction. Furthermore, meta-data including gender and age has not been well studied in these researches. To address those limitations, we propose a multi-module Recurrent Convolutional Neural Networks (RCNNs) consisting of both CNNs to learn spatial representation and Recurrent Neural Networks (RNNs) to model the temporal relationship. Our multi-module RCNNs architecture is designed as an end-to-end deep framework with four modules: (i) timeseries module by 1D RCNNs which extracts spatio-temporal information of ECG time series; (ii) spectrogram module by 2D RCNNs which learns visual-temporal representation of ECG spectrogram ; (iii) metadata module which vectorizes age and gender information; (iv) fusion module which semantically fuses the information from three above modules by a transformer encoder. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH) under different network configurations. The experimental results have proved that our proposed multi-module RCNNs with transformer encoder achieves the state-of-the-art with 99.14% F1 score and 98.29% accuracy. 
    more » « less
  5. Paroxysmal atrial fibrillation (Paro. AF) is challenging to identify at the right moment. This disease is often undiagnosed using currently existing methods. Nonlinear analysis is gaining importance due to its capability to provide more insight into complex heart dynamics. The aim of this study is to use several recently developed nonlinear techniques to discriminate persistent AF (Pers. AF) from normal sinus rhythm (NSR), and more importantly, Paro. AF from NSR, using short-term single-lead electrocardiogram (ECG) signals. Specifically, we adapted and modified the time-delayed embedding method to minimize incorrect embedding parameter selection and further support to reconstruct proper phase plots of NSR and AF heart dynamics, from MIT-BIH databases. We also examine information-based methods, such as multiscale entropy (MSE) and kurtosis (Kt) for the same purposes. Our results demonstrate that embedding parameter time delay ( τ ), as well as MSE and Kt values can be successfully used to discriminate between Pers. AF and NSR. Moreover, we demonstrate that τ and Kt can successfully discriminate Paro. AF from NSR. Our results suggest that nonlinear time-delayed embedding method and information-based methods provide robust discriminating features to distinguish both Pers. AF and Paro. AF from NSR, thus offering effective treatment before suffering chaotic Pers. AF. 
    more » « less