skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reverse Plasticity Underlies Rapid Evolution by Clonal Selection within Populations of Fibroblasts Propagated on a Novel Soft Substrate
Abstract Mechanical properties such as substrate stiffness are a ubiquitous feature of a cell’s environment. Many types of animal cells exhibit canonical phenotypic plasticity when grown on substrates of differing stiffness, in vitro and in vivo. Whether such plasticity is a multivariate optimum due to hundreds of millions of years of animal evolution, or instead is a compromise between conflicting selective demands, is unknown. We addressed these questions by means of experimental evolution of populations of mouse fibroblasts propagated for approximately 90 cell generations on soft or stiff substrates. The ancestral cells grow twice as fast on stiff substrate as on soft substrate and exhibit the canonical phenotypic plasticity. Soft-selected lines derived from a genetically diverse ancestral population increased growth rate on soft substrate to the ancestral level on stiff substrate and evolved the same multivariate phenotype. The pattern of plasticity in the soft-selected lines was opposite of the ancestral pattern, suggesting that reverse plasticity underlies the observed rapid evolution. Conversely, growth rate and phenotypes did not change in selected lines derived from clonal cells. Overall, our results suggest that the changes were the result of genetic evolution and not phenotypic plasticity per se. Whole-transcriptome analysis revealed consistent differentiation between ancestral and soft-selected populations, and that both emergent phenotypes and gene expression tended to revert in the soft-selected lines. However, the selected populations appear to have achieved the same phenotypic outcome by means of at least two distinct transcriptional architectures related to mechanotransduction and proliferation.  more » « less
Award ID(s):
2054796
PAR ID:
10233279
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Lu, Jian
Date Published:
Journal Name:
Molecular Biology and Evolution
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Local substrate stiffness is one of the major mechanical inputs for tissue organization during its development and remodeling. It is widely recognized that adherent cells use transmembrane proteins (integrins) at focal adhesions to translate ECM mechanical cues into intracellular bioprocess. Here we show that epithelial cells respond to substrate stiffening primarily via actin cytoskeleton organization, that requires activation of mechanosensitive Piezo1 channels. Piezo1 Knockdown cells eliminated the actin stress fibers that formed on stiff substrates, while it had minimal effect on cell morphology and spreading area. Inhibition of Piezo1 channels with GsMTx4 also significantly reduced stiffness-induced F-actin reorganization, suggesting Piezo1 mediated cation current plays a role. Activation of Piezo1 channels with specific agonist (Yoda1) resulted in thickening of F-actin fibers and enlargement of FAs on stiffer substrates, whereas it did not affect the formation of nascent FAs that facilitate spreading on the soft substrates. These results demonstrate that Piezo1 functions as a force sensor that couples with actin cytoskeleton to distinguish the substrate stiffness and facilitate epithelial adaptive remodeling. 
    more » « less
  2. The role of phenotypic plasticity in adaptive evolution has been debated for decades. This is because the strength of natural selection is dependent on the direction and magnitude of phenotypic responses to environmental signals. Therefore, the connection between plasticity and adaptation will depend on the patterns of plasticity harbored by ancestral populations before a change in the environment. Yet few studies have directly assessed ancestral variation in plasticity and tracked phenotypic changes over time. Here we resurrected historic propagules ofDaphniaspanning multiple species and lakes in Wisconsin following the invasion and proliferation of a novel predator (spiny waterflea,Bythotrephes longimanus). This approach revealed extensive genetic variation in predator-induced plasticity in ancestral populations ofDaphnia. It is unlikely that the standing patterns of plasticity shieldedDaphniafrom selection to permit long-term coexistence with a novel predator. Instead, this variation in plasticity provided the raw materials forBythotrephes-mediated selection to drive rapid shifts inDaphniabehavior and life history. Surprisingly, there was little evidence for the evolution of trait plasticity as genetic variation in plasticity was maintained in the face of a novel predator. Such results provide insight into the link between plasticity and adaptation and highlight the importance of quantifying genetic variation in plasticity when evaluating the drivers of evolutionary change in the wild. 
    more » « less
  3. Extracellular biophysical cues such as matrix stiffness are key stimuli tuning cell fate and affecting tumor progression in vivo. However, it remains unclear how cancer spheroids in a 3D microenvironment perceive matrix mechanical stiffness stimuli and translate them into intracellular signals driving progression. Mechanosensitive Piezo1 and TRPV4 ion channels, upregulated in many malignancies, are major transducers of such physical stimuli into biochemical responses. Most mechanotransduction studies probing the reception of changing stiffness cues by cells are, however, still limited to 2D culture systems or cell-extracellular matrix models, which lack the major cell–cell interactions prevalent in 3D cancer tumors. Here, we engineered a 3D spheroid culture environment with varying mechanobiological properties to study the effect of static matrix stiffness stimuli on mechanosensitive and malignant phenotypes in oral squamous cell carcinoma spheroids. We find that spheroid growth is enhanced when cultured in stiff extracellular matrix. We show that the protein expression of mechanoreceptor Piezo1 and stemness marker CD44 is upregulated in stiff matrix. We also report the upregulation of a selection of genes with associations to mechanoreception, ion channel transport, extracellular matrix organization, and tumorigenic phenotypes in stiff matrix spheroids. Together, our results indicate that cancer cells in 3D spheroids utilize mechanosensitive ion channels Piezo1 and TRPV4 as means to sense changes in static extracellular matrix stiffness, and that stiffness drives pro-tumorigenic phenotypes in oral squamous cell carcinoma. 
    more » « less
  4. Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance—maternal environmental effects—jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource‐use phenotypes (“resource polyphenism”) with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition‐dependent maternal effect and not a genetic loss of plasticity, that is “genetic assimilation,” and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution. 
    more » « less
  5. Developmental plasticity is the capacity of a single genotype to express multiple phenotypes in response to different early‐life environments. Such responses are defined by reaction norms, which may vary among individuals or populations. Variation in developmental reaction norms allows natural selection to operate on plasticity and is rarely examined in vertebrates. We quantified variation in embryonic developmental plasticity within and between populations using the brown anole lizard. We captured lizards from two islands in the Matanzas River (Florida, USA) and incubated their eggs under one of two multivariate treatments that mimicked the temperature, moisture and substrates of nest sites in either a shaded or open habitat. We measured hatchling morphology, performance, and physiology to quantify variation in family‐level reaction norms. We observed evidence of family‐level variation in reaction norms for morphology but not for performance or physiology, indicating an opportunity for natural selection to shape plasticity in hatchling body size. Overall, the results indicate that multiple abiotic conditions in natural nests combine to increase or reduce phenotypic variation, and that family‐level variation in reaction norms provides a potential for natural selection to shape plasticity. 
    more » « less