skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VHF Imaging Radar Observations and Theory of Banded Midlatitude Sporadic E Ionization Layers
Observations of backscatter from field-aligned plasma density irregularities in sporadic E (Es) layers made with a 30-MHz coherent scatter radar imager in Ithaca, New York are presented and analyzed. The volume probed by the radar lies at approximately 54° geomagnetic latitude, under the midlatitude trough and at the extreme northern edge of the zone where Es layers are prevalent. Nonetheless, the irregularities exhibit many of the characteristics of quasiperiodic echoes observed commonly at lower middle latitudes. These include a tendency to occur in elongated bands stretching from the northwest to southeast in the Northern hemisphere separated by tens of kilometers and propagating to the southwest. In addition, the irregularities were found to exhibit finer-scale structures with secondary bands oriented nearly normally to the primary bands. We investigate the proposition that the primary bands are telltale of Es-layer structuring caused by neutral Kelvin Helmholtz (KH) instability in the lower thermosphere and that the secondary bands signify secondary KH instability. Results from a 3D numerical simulation of KH support this proposition.  more » « less
Award ID(s):
2011304
PAR ID:
10233517
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of geophysical research
ISSN:
2169-9402
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Observations of coherent scatter from patchy sporadicElayers in the subauroral zone made with a 30‐MHz coherent scatter radar imager are presented. The quasiperiodic (QP) echoes are similar to what has been observed at middle latitudes but with some differences. The echoes arise from bands of scatterers aligned mainly northwest to southeast and propagating to the southwest. A notable difference from observations at middle latitudes is the appearance of secondary irregularities or braids oriented obliquely to the primary bands and propagating mainly northward along them. We present a spectral simulation of the patchy layers that describes neutral atmospheric dynamics with the incompressible Navier Stokes equations and plasma dynamics with an extended MHD model. The simulation is initialized with turning shears in the form of an Ekman spiral. Ekman‐type instability deforms the sporadicElayer through compressible and incompressible motion. The layer ultimately exhibits both the QP bands and the braids, consequences mainly of primary and secondary neutral dynamic instability. Vorticity due to dynamic instability is an important source of structuring in the sporadicElayer. 
    more » « less
  2. Abstract Sporadic‐E (Es) are thin layers of enhanced ionization observed in the E‐region, typically between 95 and 120 km altitude. Es plays an important role in controlling the dynamics of the upper atmosphere and it is necessary to understand the geophysical factors influencing Es from both the scientific and operational perspectives. While the wind‐shear theory is widely accepted as an important mechanism responsible for the generation of Es, there are still gaps in the current state of our knowledge. For example, we are yet to determine precisely how changes in the dynamics of horizontal winds impact the formation, altitude, and destruction of Es layers. In this study, we report results from a coordinated experimental campaign between the Millstone Hill Incoherent Scatter Radar, the SuperDARN radar at Blackstone, and the Millstone Hill Digisonde to monitor the dynamics of mid‐latitude Es layers. We report observations during a 15‐hr window between 13 UT on 3 June 2022 and 4 UT on 4 June 2022, which was marked by the presence of a strong Es layer. We find that the height of the Es layer is collocated with strong vertical shears in atmospheric tides and that the zonal wind shears play a more important role than meridional wind shears in generating Es, especially at lower altitudes. Finally, we show that in the presence of Es, SuperDARN ground backscatter moves to closer ranges, and the height and critical frequency of the Es layer have a significant impact on the location and intensity of HF ground scatter. 
    more » « less
  3. Fritts et al. (J. Fluid Mech., vol. xx, 2022, xx) describe a direct numerical simulation of interacting Kelvin–Helmholtz instability (KHI) billows arising due to initial billow cores that exhibit variable phases along their axes. Such KHI exhibit strong ‘tube and knot’ dynamics identified in early laboratory studies by Thorpe ( Geophys. Astrophys. Fluid Dyn. , vol. 34, 1985, pp. 175–199). Thorpe ( Q.J.R. Meteorol. Soc. , vol. 128, 2002, pp. 1529–1542) noted that these dynamics may be prevalent in the atmosphere, and they were recently identified in atmospheric observations at high altitudes. Tube and knot dynamics were found by Fritts et al. ( J. Fluid. Mech. , 2022) to drive stronger and faster turbulence transitions than secondary instabilities of individual KH billows. Results presented here reveal that KHI tube and knot dynamics also yield energy dissipation rates $$\sim$$ 2–4 times larger as turbulence arises and that remain $$\sim$$ 2–3 times larger to later stages of the flow evolution, compared with those of secondary convective instabilities (CI) and secondary KHI accompanying KH billows without tube and knot influences. Elevated energy dissipation rates occur due to turbulence transitions by tube and knot dynamics arising on much larger scales than secondary CI and KHI where initial KH billows are misaligned. Tube and knot dynamics also excite large-scale Kelvin ‘twist waves’ that cause vortex tube and billow core fragmentation, more energetic cascades of similar interactions to smaller scales and account for the strongest energy dissipation events accompanying such KH billow evolutions. 
    more » « less
  4. Abstract Kelvin–Helmholtz instability (KH) waves have been broadly shown to affect the growth of hydrometeors within a region of falling precipitation, but formation and growth from KH waves at cloud top needs further attention. Here, we present detailed observations of cloud-top KH waves that produced a snow plume that extended to the surface. Airborne transects of cloud radar aligned with range height indicator scans from ground-based precipitation radar track the progression and intensity of the KH wave kinetics and precipitation. In situ cloud probes and surface disdrometer measurements are used to quantify the impact of the snow plume on the composition of an underlying supercooled liquid water (SLW) cloud and the snowfall observed at the surface. KH wavelengths of 1.5 km consisted of ∼750-m-wide up- and downdrafts. A distinct fluctus region appeared as a wave-breaking cloud top where the fastest updraft was observed to exceed 5 m s −1 . Relatively weaker updrafts of 0.5–1.5 m s −1 beneath the fluctus and partially overlapping the dendritic growth zone were associated with steep gradients in reflectivity of −5 to 20 dB Z e in as little as 500-m depths due to rapid growth of pristine planar ice crystals. The falling snow removed ∼80% of the SLW content from the underlying cloud and led to a twofold increase in surface liquid equivalent snowfall rate from 0.6 to 1.3 mm h −1 . This paper presents the first known study of cloud-top KH waves producing snowfall with observations of increased snowfall rates at the surface. 
    more » « less
  5. null (Ed.)
    The ShUREX (Shigaraki UAV Radar Experiment) 2015 campaign carried out at the Shigaraki Middle and Upper atmosphere (MU) observatory (Japan) in June 2015 provided a unique opportunity to compare vertical profiles of atmospheric parameters estimated from unmanned aerial vehicle (UAV), balloon, and radar data in the lower troposphere. The present work is intended primarily as a demonstration of the potential offered by combination of these three instruments for studying the small-scale structure and dynamics in the lower troposphere. Here, we focus on data collected almost simultaneously by two instrumented UAVs and two meteorological balloons, near the MU radar operated continuously during the campaign. The UAVs flew along helical ascending and descending paths at a nearly constant horizontal distance from the radar (~ 1.0 km), while the balloons launched from the MU radar site drifted up to ~ 3–5 km in the altitude range of comparisons (~ 0.5 to 4.0 km) due to wind advection. Vertical profiles of squared Brünt-Väisälä frequency N2 and squared vertical gradient of generalized potential refractive index M2 were estimated at a vertical resolution of 20 m from pressure, temperature, and humidity data collected by UAVs and radiosondes. Profiles of M2 were also estimated from MU radar echo power at vertical incidence at a vertical sampling of 20 m and various time resolutions (1–4 min). The balloons and the MU radar provided vertical profiles of wind and wind shear S so that two independent estimates of the gradient Richardson number (Ri = N2/S2) could be obtained at a range resolution of 150 m. The two estimates of Ri profiles also showed remarkable agreement at all altitudes. We show that all three instruments detected the same prominent temperature and humidity gradients, down to decameter scales in stratified conditions. These gradients extended horizontally over a few kilometers at least and persisted for hours without significant changes, indicating that the turbulent diffusion was weak. Large discrepancies between N2and M2 profiles derived from the balloon, UAV, and radar data were found in a turbulent layer generated by a Kelvin-Helmholtz (KH) shear flow instability in the height range from 1.80 to 2.15 km. The cause of these discrepancies appears to depend on the stage of the KH billows. 
    more » « less