skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Late Stage Domain Coarsening Dynamics of Lamellar Block Copolymers
The block copolymer (BCP) phase separation is an intriguing phenomenon, the dynamics of which can be expected to differ significantly from that of the polymer blends due to the chain connectivity constraints. The BCP phase separation dynamics has been studied theoretically, but there has been little experimental evidence to confirm the BCP domain growth scaling laws put forward by theoretical studies. Here, we demonstrate the dynamics of late-stage lamellar BCP domain coarsening and show that the scaling exponent for domain growth is ≈1/6 (0.17) irrespective of the annealing temperature, which is close to the scaling exponent of 0.2 shown by theoretical studies. Furthermore, we show that the pre-factors in the domain coarsening equation show Arrhenius dependence on temperature indicating that the BCP domain growth dynamics is Arrhenius.  more » « less
Award ID(s):
1905996
PAR ID:
10233587
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Segalman, Rachel
Date Published:
Journal Name:
ACS Macro Letters
Volume:
10
ISSN:
2161-1653
Page Range / eLocation ID:
727 to 731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a companion paper, we put forth a thermodynamic model for complex formation via a chemical reaction involving multiple macromolecular species, which may subsequently undergo liquid–liquid phase separation and a further transition into a gel-like state. In the present work, we formulate a thermodynamically consistent kinetic framework to study the interplay between phase separation, chemical reaction, and aging in spatially inhomogeneous macromolecular mixtures. A numerical algorithm is also proposed to simulate domain growth from collisions of liquid and gel domains via passive Brownian motion in both two and three spatial dimensions. Our results show that the coarsening behavior is significantly influenced by the degree of gelation and Brownian motion. The presence of a gel phase inside condensates strongly limits the diffusive transport processes, and Brownian motion coalescence controls the coarsening process in systems with high area/volume fractions of gel-like condensates, leading to the formation of interconnected domains with atypical domain growth rates controlled by size-dependent translational and rotational diffusivities. 
    more » « less
  2. Coupling between chemical fuel consumption and phase separation can lead to condensation at a nonequilibrium steady state, resulting in phase behaviors that are not described by equilibrium thermodynamics. Theoretical models of such “chemically driven fluids” typically invoke near-equilibrium approximations at small length scales. However, because dissipation occurs due to both molecular-scale chemical reactions and mesoscale diffusive transport, it has remained unclear which properties of phase-separated reaction–diffusion systems can be assumed to be at an effective equilibrium. Here, we use microscopic simulations to show that mesoscopic fluxes are dependent on nonequilibrium fluctuations at phase-separated interfaces. We further develop a first-principles theory to predict nonequilibrium coexistence curves, localization of mesoscopic fluxes near phase-separated interfaces, and droplet size-scaling relations in good agreement with simulations. Our findings highlight the central role of interfacial properties in governing nonequilibrium condensation and have broad implications for droplet nucleation, coarsening, and size control in chemically driven fluids. 
    more » « less
  3. Abstract The dynamics of active smectic liquid crystals confined on a spherical surface is explored through an active phase field crystal model. Starting from an initially randomly perturbed isotropic phase, several types of topological defects are spontaneously formed, and then annihilate during a coarsening process until a steady state is achieved. The coarsening process is highly complex involving several scaling laws of defect densities as a function of time where different dynamical exponents can be identified. In general the exponent for the final stage towards the steady state is significantly larger than that in the passive and in the planar case, i.e. the coarsening is getting accelerated both by activity and by the topological and geometrical properties of the sphere. A defect type characteristic for this active system is a rotating spiral of evolving smectic layering lines. On a sphere this defect type also determines the steady state. Our results can in principle be confirmed by dense systems of synthetic or biological active particles. 
    more » « less
  4. A variety of cellular processes use liquid–liquid phase separation (LLPS) to create functional levels of organization, but the kinetic pathways by which it proceeds remain incompletely understood. Here in real time, we monitor the dynamics of LLPS of mixtures of segregatively phase-separating polymers inside all-synthetic, giant unilamellar vesicles. After dynamically triggering phase separation, we find that the ensuing relaxation—en route to the new equilibrium—is non-trivially modulated by a dynamic interplay between the coarsening of the evolving droplet phase and the interactive membrane boundary. The membrane boundary is preferentially wetted by one of the incipient phases, dynamically arresting the progression of coarsening and deforming the membrane. When the vesicles are composed of phase-separating mixtures of common lipids, LLPS within the vesicular interior becomes coupled to the membrane’s compositional degrees of freedom, producing microphase-separated membrane textures. This coupling of bulk and surface phase-separation processes suggests a physical principle by which LLPS inside living cells might be dynamically regulated and communicated to the cellular boundaries. 
    more » « less
  5. Phase separation processes are widely utilized to assemble complex fluids into novel materials. These separation processes can be thermodynamically driven due to changes in concentration, pressure, or temperature. Phase separation can also be induced with external stimuli, such as magnetic fields, resulting in novel nonequilibrium systems. However, how external stimuli influence the transition pathways between phases has not been explored in detail. Here, we describe the phase separation dynamics of superparamagnetic colloids in time-varying magnetic fields. An initially homogeneous colloidal suspension can transition from a continuous colloidal phase with voids to discrete colloidal clusters, through a bicontinuous phase formed via spinodal decomposition. The type of transition depends on the particle concentration and magnitude of the applied magnetic field. The spatiotemporal evolution of the microstructure during the nucleation and growth period is quantified by analyzing the morphology using Minkowski functionals. The characteristic length of the colloidal systems was determined to correlate with system variables such as magnetic field strength, particle concentration, and time in a power-law scaling relationship. Understanding the interplay between particle concentration and applied magnetic field allows for better control of the phases observed in these magnetically tunable colloidal systems. 
    more » « less