skip to main content


Title: Combined Influences on North American Winter Air Temperature Variability from North Pacific Blocking and the North Atlantic Oscillation: Subseasonal and Interannual Time Scales
Abstract Winter surface air temperature (SAT) over North America exhibits pronounced variability on subseasonal, interannual, decadal, and interdecadal time scales. Here, reanalysis data from 1950–2017 are analyzed to investigate the atmospheric and surface ocean conditions associated with its subseasonal to interannual variability. Detrended daily SAT data reveal a known warm west/cold east (WWCE) dipole over midlatitude North America and a cold north/warm south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO − ) coincides with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO + ), the WWCE dipole weakens and the CNWS dipole is enhanced. The PB events concurrent with the NAO − (NAO + ) and SAT WWCE (CNWS) dipole are favored by the Pacific El Niño–like (La Niña–like) sea surface temperature mode and the positive (negative) North Pacific mode. The PB-NAO + has a larger component projecting onto the SAT WWCE dipole during the La Niña winter than during the El Niño winter because a more zonal wave train is formed. Strong North American SAT WWCE dipoles and enhanced projections of PB-NAO + events onto the SAT WWCE dipole component are also readily seen for the positive North Pacific mode. The North Pacific mode seems to play a bigger role in the North American SAT variability than ENSO.  more » « less
Award ID(s):
1743738
NSF-PAR ID:
10233633
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
16
ISSN:
0894-8755
Page Range / eLocation ID:
7101 to 7123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The deepest wintertime (Jul-Sep) mixed layers associated with Subantarctic Mode Water (SAMW) formation develop in the Indian and Pacific sectors of the Southern Ocean. In these two sectors the dominant interannual variability of both deep wintertime mixed layers and SAMW volume is a east-west dipole pattern in each basin. The variability of these dipoles are strongly correlated with the interannual variability of overlying winter quasi-stationary mean sea level pressure (MSLP) anomalies. Anomalously strong positive MSLP anomalies are found to result in the deepening of the wintertime mixed layers and an increase in the SAMW formation in the eastern parts of the dipoles in the Pacific and Indian sectors. These effects are due to enhanced cold southerly meridional winds, strengthened zonal winds and increased surface ocean heat loss. The opposite occurs in the western parts of the dipoles in these sectors. Conversely, strong negative MSLP anomalies result in shoaling (deepening) of the wintertime mixed layers and a decrease (increase) in SAMW formation in the eastern (western) regions. The MSLP variability of the Pacific and Indian basin anomalies are not always in phase, especially in years with a strong El Niño, resulting in different patterns of SAMW formation in the western vs. eastern parts of the Indian and Pacific sectors. Strong isopycnal depth and thickness anomalies develop in the SAMW density range in years with strong MSLP anomalies. When advected eastward, they act to precondition downstream SAMW formation in the subsequent winter. 
    more » « less
  2. Abstract

    A large proportion of western North America experiences regular water stress, compounded by high seasonal and interannual variability. In the Intermountain West region, the El Niño/Southern Oscillation (ENSO) is a critical control on winter precipitation, but the nature of this signal is entangled with a combination of orographic effects and long-term climate trends. This study employs a spatially distributed, nonlinear spline model to isolate ENSO impacts from these other factors using gauge-based observations starting in 1871. In contrast to previous modelling approaches, our approach uses original gauge data, without shortening the record to accommodate a common period. This enables more detailed separation of ENSO effects from the confounding influence of topography and long-term trends, whereas the longer time frame permits more robust correlation with the ENSO signal. Here we show that the complex topography of the Intermountain West exaggerates the underlying ENSO signal, producing a 2.3–5.8 times increase in the range of ENSO-induced precipitation changes along high-elevation western slopes relative to lower elevations. ENSO effects on winter precipitation can be as large as ± 100 mm at high elevations. Further, our approach reveals that the previously recognized dipolar pattern of positive (negative) association of ENSO with precipitation in the south (north) manifests as an incremental relationship in the south but as a near-binary switch in effects between El Niño and La Niña in the north. The location and extent of the strongest precipitation differences vary during the positive and negative ENSO phases within each region. The intricacies of these spatial- and elevation-based modulations of ENSO impacts are especially informative for the northern centre of this dipole, where ENSO-precipitation relationships have previously been difficult to resolve.

     
    more » « less
  3. Abstract From 5 July to 11 September 2012, the Amundsen–Scott South Pole station experienced an unprecedented 78 days in a row with a maximum temperature at or below −50°C. Aircraft and ground-based activity cannot function without risk below this temperature. Lengthy periods of extreme cold temperatures are characterized by a drop in pressure of around 15 hPa over 4 days, accompanied by winds from grid east. Periodic influxes of warm air from the Weddell Sea raise the temperature as the wind shifts to grid north. The end of the event occurs when the temperature increase is enough to move past the −50°C threshold. This study also examines the length of extreme cold periods. The number of days below −50°C in early winter has been decreasing since 1999, and this trend is statistically significant at the 5% level. Late winter shows an increase in the number of days below −50°C for the same period, but this trend is not statistically significant. Changes in the southern annular mode, El Niño–Southern Oscillation, and the interdecadal Pacific oscillation/tripole index are investigated in relation to the initiation of extreme cold events. None of the correlations are statistically significant. A positive southern annular mode and a La Niña event or a central Pacific El Niño–Southern Oscillation pattern would position the upper-level circulation to favor a strong, symmetrical polar vortex with strong westerlies over the Southern Ocean, leading to a cold pattern over the South Pole. Significance Statement The Amundsen–Scott South Pole station is the coldest Antarctic station staffed year-round by U.S. personnel. Access to the station is primarily by airplane, especially during the winter months. Ambient temperature limits air access as planes cannot operate at minimum temperatures below −50°C. The station gets supplies during the winter months if needed, and medical emergencies can happen requiring evacuations. Knowing when planes would be able to fly is crucial, especially for life-saving efforts. During 2012, a record 78 continuous days of temperatures below −50°C occurred. A positive southern annular mode denoting strong westerly winds over the Pacific Ocean and a strong polar vortex over the South Pole contribute to the maintenance of long periods of extremely cold temperatures. 
    more » « less
  4. Abstract

    The Arctic stratospheric polar vortex is an important driver of winter weather and climate variability and predictability in North America and Eurasia, with a downward influence that on average projects onto the North Atlantic Oscillation (NAO). While tropospheric circulation anomalies accompanying anomalous vortex states display substantial case‐by‐case variability, understanding the full diversity of the surface signatures requires larger sample sizes than those available from reanalyses. Here, we first show that a large ensemble of seasonal hindcasts realistically reproduces the observed average surface signatures for weak and strong vortex winters and produces sufficient spread for single ensemble members to be considered as alternative realizations. We then use the ensemble to analyze the diversity of surface signatures during weak and strong vortex winters. Over Eurasia, relatively few weak vortex winters are associated with large‐scale cold conditions, suggesting that the strength of the observed cold signature could be inflated due to insufficient sampling. For both weak and strong vortex winters, the canonical temperature pattern in Eurasia only clearly arises when North Atlantic sea surface temperatures are in phase with the NAO. Over North America, while the main driver of interannual winter temperature variability is the El Niño–Southern Oscillation (ENSO), the stratosphere can modulate ENSO teleconnections, affecting temperature and circulation anomalies over North America and downstream. These findings confirm that anomalous vortex states are associated with a broad spectrum of surface climate anomalies on the seasonal scale, which may not be fully captured by the small observational sample size.

     
    more » « less
  5. Abstract The Sea Surface Temperature Anomaly (SSTA) in tropical Atlantic during boreal spring and summer shows two dominant modes: a basin-warming and a meridional dipole mode, respectively. Observational and coupled model simulations indicate that the former induces a Pacific La Niña in the succeeding winter whereas the latter cannot. The basin-warming forcing induces a La Niña through a Kelvin wave response and the associated wind-evaporation-SST-convection (WESC) feedback over the northern Indian Ocean (NIO) and Maritime Continent (MC). Anomalous Kelvin wave easterly interacts with the monsoonal westerly, leading to a warm SSTA and a northwest-southeast oriented heating anomaly in NIO/MC, which further induces easterly and cold SSTA over the equatorial Pacific. In contrast, the dipole forcing has little impact on the Indian and Pacific Oceans due to the offsetting of the Kelvin wave to the asymmetric Atlantic heating. Further observational and modeling studies towards the Tropical North Atlantic (TNA) and Equatorial Atlantic (EA) SSTA modes indicate that the TNA (EA) forcing induces a CP- (EP-) type ENSO. In both cases, the Kelvin wave response and the WESC feedback over the NIO/MC are important in conveying the Atlantic’s impact. The difference lies in distinctive Rossby wave responses – A marked westerly anomaly appears in the equatorial eastern Pacific (EEP) for the TNA forcing (due to its westward location) while no significant wind response is observed in EEP for the EA forcing. The westerly anomaly prevents a cooling tendency in EEP through anomalous zonal and vertical advection according to a mixed-layer heat budget analysis. 
    more » « less