skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Linkage between Projected Precipitation and Atmospheric Thermodynamic Changes
Abstract Light–moderate precipitation is projected to decrease whereas heavy precipitation may increase under greenhouse gas (GHG)-induced global warming, while atmospheric convective available potential energy (CAPE) over most of the globe and convective inhibition (CIN) over land are projected to increase. The underlying processes for these precipitation changes are not fully understood. Here, projected precipitation changes are analyzed using 3-hourly data from simulations by a fully coupled climate model, and their link to the CAPE and CIN changes is examined. The model approximately captures the spatial patterns in the mean precipitation frequencies and the significant correlation between the precipitation frequencies or intensity and CAPE over most of the globe or CIN over tropical oceans seen in reanalysis, and it projects decreased light–moderate precipitation (0.01 < P ≤ 1 mm h −1 ) but increased heavy precipitation ( P > 1 mm h −1 ) in a warmer climate. Results show that most of the light–moderate precipitation events occur under low-CAPE and/or low-CIN conditions, which are projected to decrease greatly in a warmer climate as increased temperature and humidity shift many of such cases into moderate–high CAPE or CIN cases. This results in large decreases in the light–moderate precipitation events. In contrast, increases in heavy precipitation result primarily from its increased probability under given CAPE and CIN, with a secondary contribution from the CAPE/CIN frequency changes. The increased probability for heavy precipitation partly results from a shift of the precipitation histogram toward higher intensity that could result from a uniform percentage increase in precipitation intensity due to increased water vapor in a warmer climate.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Climate
Page Range / eLocation ID:
7155 to 7178
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric convective available potential energy (CAPE) is expected to increase under greenhouse gas–induced global warming, but a recent regional study also suggests enhanced convective inhibition (CIN) over land although its cause is not well understood. In this study, a global climate model is first evaluated by comparing its CAPE and CIN with reanalysis data, and then their future changes and the underlying causes are examined. The climate model reasonably captures the present-day CAPE and CIN patterns seen in the reanalysis, and projects increased CAPE almost everywhere and stronger CIN over most land under global warming. Over land, the cases or times with medium to strong CAPE or CIN would increase while cases with weak CAPE or CIN would decrease, leading to an overall strengthening in their mean values. These projected changes are confirmed by convection-permitting 4-km model simulations over the United States. The CAPE increase results mainly from increased low-level specific humidity, which leads to more latent heating and buoyancy for a lifted parcel above the level of free convection (LFC) and also a higher level of neutral buoyancy. The enhanced CIN over most land results mainly from reduced low-level relative humidity (RH), which leads to a higher lifting condensation level and a higher LFC and thus more negative buoyancy. Over tropical oceans, the near-surface RH increases slightly, leading to slight weakening of CIN. Over the subtropical eastern Pacific and Atlantic Ocean, the impact of reduced low-level atmospheric lapse rates overshadows the effect of increased specific humidity, leading to decreased CAPE.

    more » « less
  2. Changes in precipitation amount, intensity and frequency in response to global warming are examined using global high‐resolution (16 km) climate model simulations based on the European Centre for Medium‐range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) conducted under Project Athena.

    Our study shows the increases of zonal‐mean total precipitation in all latitudes except the northern subtropics (15°–30°N) and southern subtropics‐to‐midlatitudes (30°–40°S). The probability distribution function (PDF) changes in different latitudes suggest a higher occurrence of light precipitation (LP; ≤1 mm/day) and heavy precipitation (HP; ≥30 mm/day) at the expense of moderate precipitation reduction (MP; 1–30 mm/day) from Tropics to midlatitudes, but an increase in all categories of precipitation in polar regions.

    On the other hand, the PDF change with global warming in different precipitation climatological zones presents another image. For all regions and seasons examined, there is an HP increase at the cost of MP, but LP varies. The reduced MP in richer precipitation zones resides in the PDF peak intensities, which linearly increase with the precipitation climatology zones. In particular in the Tropics (20°S to 20°N), the precipitation PDF has a flatter distribution (i.e. HP and LP increases with MP reduction) except for the Sahara Desert. In the primary precipitation zones in the subtropics (20°–40°) of both hemispheres, precipitation over land switches toward higher intensity (HP increases, but MP and LP decrease) in both winter and summer, while precipitation over ocean in both seasons shows a flattening trend in the intensity distribution. For the major precipitation zones of the mid‐to‐high latitude belt (40°–70°), PDF of precipitation tends to be flatter over ocean in summer, but switches toward higher intensities over land in both summer and winter, as well as over ocean in winter.

    more » « less
  3. Abstract Although the intensity of extreme precipitation is predicted to increase with climate warming, at the weather scale precipitation extremes over most of the globe decrease when temperature exceeds a certain threshold, and the spatial extent of this negative scaling is projected to increase as the climate warms. The nature and cause of the negative scaling at high temperature and its implications remain poorly understood. Based on sub-daily data from observations, reanalysis data, and output from a coarse-resolution (∼200 km) global model and a fine-resolution (4 km) convection-permitting regional model, we show that the negative scaling is primarily a reflection of high temperature suppressing precipitation over land and storm-induced temperature variation over the ocean. We further identify the high temperature-induced increase of saturation deficit as a critical condition for the negative scaling of extreme precipitation over land. Large saturation deficit reduces precipitation intensity by slowing down the convective updraft condensation rate and accelerating condensate evaporation. The heat-induced suppression of precipitation, both for its mean and extremes, provides one mechanism for the co-occurrence of drought and heatwaves. As the saturation deficit over land is expected to increase in a warmer climate, our results imply a growing prevalence of negative scaling, potentially increasing the frequency of compound drought and heat events. Understanding the physical mechanisms underlying the negative scaling of precipitation at high temperature is, therefore, essential for assessing future risks of extreme events, including not only flood due to extreme precipitation but also drought and heatwaves. 
    more » « less
  4. Abstract

    We analyze the evolution of convective available potential energy (CAPE) and convective inhibition (CIN) in the days leading up to episodes of high CAPE in North America. The widely accepted theory for CAPE buildup, known as the advection hypothesis, states that high moist static energy (MSE) parcels of air moving north from the Gulf of Mexico become trapped under warm but dry parcels moving east from over elevated dry terrain. If and when the resulting CIN erodes, severe convection can occur due to the large energy difference between the boundary layer parcels and cool air aloft. However, our results, obtained via backward Lagrangian tracking of parcels at locations of peak CAPE, show that large values of CAPE are generated mainly via boundary layer moistening in the days leading up to the time of peak CAPE, and that a large portion of this moisture buildup happens on the day of peak CAPE. On the other hand, the free-tropospheric temperature above these tracked parcels rarely changes significantly over the days leading up to such occurrences. In addition, the CIN that allows for this buildup of CAPE arises mostly from unusually strong boundary layer cooling the night before peak CAPE, and has a contribution from differential advection of unusually warm air above the boundary layer to form a capping inversion. These results have important implications for the climatology of severe convective events, as it emphasizes the role of surface properties and their gradients in the frequency and intensity of high CAPE occurrences.

    Significance Statement

    Severe convective events, such as thunderstorms, tornadoes, and hail storms, are among the most deadly and destructive weather systems. Although forecasters are quite good at predicting the probability of these events a few days in advance, there is currently no reliable seasonal prediction method of severe convection. We show that the buildup of energy for severe convection relies on both strong surface evaporation during the day of peak energy and anomalous cooling the night before. This progress represents a step toward understanding what controls the frequency of severe convective events on seasonal and longer time scales, including the effect of greenhouse gas–induced climate change.

    more » « less
  5. Abstract

    The northeastern United States (NEUS) is a densely populated region with a number of major cities along the climatological storm track. Despite its economic and social importance, as well as the area’s vulnerability to flooding, there is significant uncertainty around future trends in extreme precipitation over the region. Here, we undertake a regional study of the projected changes in extreme precipitation over the NEUS through the end of the twenty-first century using an ensemble of high-resolution, dynamically downscaled simulations from the North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) project. We find that extreme precipitation increases throughout the region, with the largest changes in coastal regions and smaller changes inland. These increases are seen throughout the year, although the smallest changes in extreme precipitation are seen in the summer, in contrast to earlier studies. The frequency of heavy precipitation also increases such that there are relatively fewer days with moderate precipitation and relatively more days with either no or strong precipitation. Averaged over the region, extreme precipitation increases by +3%–5% °C−1of local warming, with the largest fractional increases in southern and inland regions and occurring during the winter and spring seasons. This is lower than the +7% °C−1rate expected from thermodynamic considerations alone and suggests that dynamical changes damp the increases in extreme precipitation. These changes are qualitatively robust across ensemble members, although there is notable intermodel spread associated with models’ climate sensitivity and with changes in mean precipitation. Together, the NA-CORDEX simulations suggest that this densely populated region may require significant adaptation strategies to cope with the increase in extreme precipitation expected at the end of the next century.

    Significance Statement

    Observations show that the northeastern United States has already experienced increases in extreme precipitation, and prior modeling studies suggest that this trend is expected to continue through the end of the century. Using high-resolution climate model simulations, we find that coastal regions will experience large increases in extreme precipitation (+6.0–7.5 mm day−1), although there is significant intermodel spread in the trends’ spatial distribution and in their seasonality. Regionally averaged, extreme precipitation will increase at a rate of ∼2% decade−1. Our results also suggest that the frequency of extreme precipitation will increase, with the strongest storms doubling in frequency per degree of warming. These results, taken with earlier studies, provide guidance to aid in resiliency preparation and planning by regional stakeholders.

    more » « less