skip to main content


Title: South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation
A reliable projection of future South Asian summer monsoon (SASM) benefits a large population in Asia. Using a 100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member ensemble of simulations by the Canadian Earth System Model (CanESM2), we find that internal variability can overshadow the forced SASM rainfall trend, leading to large projection uncertainties for the next 15 to 30 years. We further identify that the Interdecadal Pacific Oscillation (IPO) is, in part, responsible for the uncertainties. Removing the IPO-related rainfall variations reduces the uncertainties in the near-term projection of the SASM rainfall by 13 to 15% and 26 to 30% in the MPI-ESM and CanESM2 ensembles, respectively. Our results demonstrate that the uncertainties in near-term projections of the SASM rainfall can be reduced by improving prediction of near-future IPO and other internal modes of climate variability.  more » « less
Award ID(s):
1743738
NSF-PAR ID:
10233666
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
11
ISSN:
2375-2548
Page Range / eLocation ID:
eaay6546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Natural climate variability poses a limit to the confidence in regional climate projections, particularly for the near‐term. Therefore, the next decades are of importance for regional impact studies and the development of regional adaptation plans. This article presents results from an ensemble of regional climate model simulations (years 1996–2005 and 2026–2035) that are used to examine the effects of both anthropogenic forcing and natural variability associated with the Pacific Decadal Oscillation (PDO) on near‐term climate projections for the Hawaiian Islands. The Community Earth System Model Large Ensemble (CESM‐LE) is used in conjunction with the Weather Research and Forecasting (WRF) model for downscaling. The climate responses to the PDO and anthropogenic forcing are isolated and analyzed separately. In response to anthropogenic forcing, significant increases in surface air temperature, of ∼0.8 K, are projected at low elevations. Stronger warming, of up to 1.3 K, is seen at higher elevation areas. Future climate simulations show significant increases in wet season rainfall, of ∼10%–20%, along the windward slopes of Big Island and Maui. Rainfall patterns during the positive PDO phase are projected to reverse in sign, leading to drier conditions, by ∼10%–30%, at many locations. Future climate simulations show daily rainfall extremes will increase, by up to ∼10%–15%, at many locations. Daily temperature extremes are also projected to increase significantly, by up to 1.4 K. Overall, results indicate that natural variability will continue to contribute to uncertainty in near‐term rainfall projections for the Hawaiian Islands, masking the forced signal.

     
    more » « less
  2. Abstract

    Internal climate variability plays an important role in the abundance and distribution of phytoplankton in the global ocean. Previous studies using large ensembles of Earth system models (ESMs) have demonstrated their utility in the study of marine phytoplankton variability. These ESM large ensembles simulate the evolution of multiple alternate realities, each with a different phasing of internal climate variability. However, ESMs may not accurately represent real world variability as recorded via satellite and in situ observations of ocean chlorophyll over the past few decades. Observational records of surface ocean chlorophyll equate to a single ensemble member in the large ensemble framework, and this can cloud the interpretation of long‐term trends: are they externally forced, caused by the phasing of internal variability, or both? Here, we use a novel statistical emulation technique to place the observational record of surface ocean chlorophyll into the large ensemble framework. Much like a large initial condition ensemble generated with an ESM, the resulting synthetic ensemble represents multiple possible evolutions of ocean chlorophyll concentration, each with a different sampling of internal climate variability. We further demonstrate the validity of our statistical approach by recreating an ESM ensemble of chlorophyll using only a single ESM ensemble member. We use the synthetic ensemble to explore the interpretation of long‐term trends in the presence of internal variability and find a wider range of possible trends in chlorophyll due to the sampling of internal variability in subpolar regions than in subtropical regions.

     
    more » « less
  3. null (Ed.)
    Abstract The Indian summer monsoon (ISM) rainfall affects a large population in South Asia. Observations show a decline in ISM rainfall from 1950 to 1999 and a recovery from 1999 to 2013. While the decline has been attributed to global warming, aerosol effects, deforestation, and a negative-to-positive phase transition of the interdecadal Pacific oscillation (IPO), the cause for the recovery remains largely unclear. Through analyses of a 57-member perturbed-parameter ensemble of model simulations, this study shows that the externally forced rainfall trend is relatively weak and is overwhelmed by large internal variability during both 1950–99 and 1999–2013. The IPO is identified as the internal mode that helps modulate the recent decline and recovery of the ISM rainfall. The IPO induces ISM rainfall changes through moisture convergence anomalies associated with an anomalous Walker circulation and meridional tropospheric temperature gradients and the resultant anomalous convection and zonal moisture advection. The negative-to-positive IPO phase transition from 1950 to 1999 reduces what would have been an externally forced weak upward rainfall trend of 0.01 to −0.15 mm day −1 decade −1 during that period, while the rainfall trend from 1999 to 2013 increases from the forced value of 0.42 to 0.68 mm day −1 decade −1 associated with a positive-to-negative IPO phase transition. Such a significant modulation of the historical ISM rainfall trends by the IPO is confirmed by another 100-member ensemble of simulations using perturbed initial conditions. Our findings highlight that the interplay between the effects of external forcing and the IPO needs be considered for climate adaptation and mitigation strategies in South Asia. 
    more » « less
  4. null (Ed.)
    Abstract Southeastern South America (SESA; encompassing Paraguay, Southern Brazil, Uruguay, and northern Argentina) experienced a 27% increase in austral summer precipitation from 1902-2019, one of the largest observed trends in seasonal precipitation globally. Previous research identifies Atlantic Multidecadal Variability and anthropogenic forcing from stratospheric ozone depletion and greenhouse gas emissions as key factors contributing to the positive precipitation trends in SESA. We analyze multi-model ensemble simulations from Phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) and find that not only do Earth System Models simulate positive SESA precipitation trends that are much weaker over the historical interval, but some models persistently simulate negative SESA precipitation trends under historical forcings. Similarly, 16-member ensembles from two atmospheric models forced with observed historical sea surface temperatures never simulate precipitation trends that even reach the lower bound of the observed trend’s range of uncertainty. Moreover, while future 21 st -century projections from CMIP6 yield positive ensemble mean precipitation trends over SESA that grow with increasing greenhouse-gas emissions, the mean forced response never exceeds the observed historical trend. Pre-industrial control runs from CMIP6 indicate that some models do occasionally simulate centennial-scale trends in SESA that fall within the observational range, but most models do not. Results point to significant uncertainties in the attribution of anthropogenically forced influences on the observed increases in precipitation over SESA, while also suggesting that internal decadal-to-centennial variability of unknown origin and not present in state-of-the-art models may have also played a large role in generating the 20 th -21 st -century SESA precipitation trend. 
    more » « less
  5. null (Ed.)
    Abstract The Southern Hemisphere summertime eddy-driven jet and storm tracks have shifted poleward over the recent few decades. In previous studies, explanations have mainly stressed the influence of external forcing in driving this trend. Here we examine the role of internal tropical SST variability in controlling the austral summer jet’s poleward migration, with a focus on interdecadal time scales. The role of external forcing and internal variability are isolated by using a hierarchy of Community Earth System Model version 1 (CESM1) simulations, including the pre-industrial control, large ensemble, and pacemaker runs. Model simulations suggest that in the early twenty-first century, both external forcing and internal tropical Pacific SST variability are important in driving a positive southern annular mode (SAM) phase and a poleward migration of the eddy-driven jet. Tropical Pacific SST variability, associated with the negative phase of the interdecadal Pacific oscillation (IPO), acts to shift the jet poleward over the southern Indian and southwestern Pacific Oceans and intensify the jet in the southeastern Pacific basin, while external forcing drives a significant poleward jet shift in the South Atlantic basin. In response to both external forcing and decadal Pacific SST variability, the transient eddy momentum flux convergence belt in the middle latitudes experiences a poleward migration due to the enhanced meridional temperature gradient, leading to a zonally symmetric southward migration of the eddy-driven jet. This mechanism distinguishes the influence of the IPO on the midlatitude circulation from the dynamical impact of ENSO, with the latter mainly promoting the subtropical wave-breaking critical latitude poleward and pushing the midlatitude jet to higher latitudes. 
    more » « less