skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation
A reliable projection of future South Asian summer monsoon (SASM) benefits a large population in Asia. Using a 100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member ensemble of simulations by the Canadian Earth System Model (CanESM2), we find that internal variability can overshadow the forced SASM rainfall trend, leading to large projection uncertainties for the next 15 to 30 years. We further identify that the Interdecadal Pacific Oscillation (IPO) is, in part, responsible for the uncertainties. Removing the IPO-related rainfall variations reduces the uncertainties in the near-term projection of the SASM rainfall by 13 to 15% and 26 to 30% in the MPI-ESM and CanESM2 ensembles, respectively. Our results demonstrate that the uncertainties in near-term projections of the SASM rainfall can be reduced by improving prediction of near-future IPO and other internal modes of climate variability.  more » « less
Award ID(s):
1743738
PAR ID:
10233666
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
11
ISSN:
2375-2548
Page Range / eLocation ID:
eaay6546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Internal climate variability plays an important role in the abundance and distribution of phytoplankton in the global ocean. Previous studies using large ensembles of Earth system models (ESMs) have demonstrated their utility in the study of marine phytoplankton variability. These ESM large ensembles simulate the evolution of multiple alternate realities, each with a different phasing of internal climate variability. However, ESMs may not accurately represent real world variability as recorded via satellite and in situ observations of ocean chlorophyll over the past few decades. Observational records of surface ocean chlorophyll equate to a single ensemble member in the large ensemble framework, and this can cloud the interpretation of long‐term trends: are they externally forced, caused by the phasing of internal variability, or both? Here, we use a novel statistical emulation technique to place the observational record of surface ocean chlorophyll into the large ensemble framework. Much like a large initial condition ensemble generated with an ESM, the resulting synthetic ensemble represents multiple possible evolutions of ocean chlorophyll concentration, each with a different sampling of internal climate variability. We further demonstrate the validity of our statistical approach by recreating an ESM ensemble of chlorophyll using only a single ESM ensemble member. We use the synthetic ensemble to explore the interpretation of long‐term trends in the presence of internal variability and find a wider range of possible trends in chlorophyll due to the sampling of internal variability in subpolar regions than in subtropical regions. 
    more » « less
  2. null (Ed.)
    Abstract The Indian summer monsoon (ISM) rainfall affects a large population in South Asia. Observations show a decline in ISM rainfall from 1950 to 1999 and a recovery from 1999 to 2013. While the decline has been attributed to global warming, aerosol effects, deforestation, and a negative-to-positive phase transition of the interdecadal Pacific oscillation (IPO), the cause for the recovery remains largely unclear. Through analyses of a 57-member perturbed-parameter ensemble of model simulations, this study shows that the externally forced rainfall trend is relatively weak and is overwhelmed by large internal variability during both 1950–99 and 1999–2013. The IPO is identified as the internal mode that helps modulate the recent decline and recovery of the ISM rainfall. The IPO induces ISM rainfall changes through moisture convergence anomalies associated with an anomalous Walker circulation and meridional tropospheric temperature gradients and the resultant anomalous convection and zonal moisture advection. The negative-to-positive IPO phase transition from 1950 to 1999 reduces what would have been an externally forced weak upward rainfall trend of 0.01 to −0.15 mm day −1 decade −1 during that period, while the rainfall trend from 1999 to 2013 increases from the forced value of 0.42 to 0.68 mm day −1 decade −1 associated with a positive-to-negative IPO phase transition. Such a significant modulation of the historical ISM rainfall trends by the IPO is confirmed by another 100-member ensemble of simulations using perturbed initial conditions. Our findings highlight that the interplay between the effects of external forcing and the IPO needs be considered for climate adaptation and mitigation strategies in South Asia. 
    more » « less
  3. Abstract Assessing uncertainty in future climate projections requires understanding both internal climate variability and external forcing. For this reason, single‐model initial condition large ensembles (SMILEs) run with Earth System Models (ESMs) have recently become popular. Here we present a new 20‐member SMILE with the Energy Exascale Earth System Model version 1 (E3SMv1‐LE), which uses a “macro” initialization strategy choosing coupled atmosphere/ocean states based on inter‐basin contrasts in ocean heat content (OHC). The E3SMv1‐LE simulates tropical climate variability well, albeit with a muted warming trend over the twentieth century due to overly strong aerosol forcing. The E3SMv1‐LE's initial climate spread is comparable to other (larger) SMILEs, suggesting that maximizing inter‐basin ocean heat contrasts may be an efficient method of generating ensemble spread. We also compare different ensemble spread across multiple SMILEs, using surface air temperature and OHC. The Community Earth system Model version 1, the only ensemble which utilizes a “micro” initialization approach perturbing only atmospheric initial conditions, yields lower spread in the first ∼30 years. The E3SMv1‐LE exhibits a relatively large spread, with some evidence for anthropogenic forcing influencing spread in the late twentieth century. However, systematic effects of differing “macro” initialization strategies are difficult to detect, possibly resulting from differing model physics or responses to external forcing. Notably, the method of standardizing results affects ensemble spread: control simulations for most models have either large background trends or multi‐centennial variability in OHC. This spurious disequlibrium behavior is a substantial roadblock to understanding both internal climate variability and its response to forcing. 
    more » « less
  4. This dataset includes annual, gridded Arctic sea ice seasonal transition metrics (dates and periods) for fifteen Coupled Model Intercomparison Project version 6 (CMIP6) models and the Community Earth System Model version 1.1 (CESM1.1) Large Ensemble (CESM LE) (Kay, et al., 2015). Seasonal transition dates include melt onset, opening, break-up, freeze onset, freeze-up and closing. Seasonal transition periods include the melt period, the seasonal loss-of-ice period, the freeze period, the seasonal gain-of-ice period, the melt season, the open water period and the outer ice-free period. Data are provided for one ensemble member of the following models: Australian Community Climate and Earth System Simulator CM2 (ACCESS-CM2), Beijing Climate Center Climate System Model 2 MR (BCC-CSM2-MR), Beijing Climate Center Earth System Model 1 (BCC-ESM1), Community Earth System Model 2 (CESM2), Community Earth System Model 2 FV2 (CESM2-FV2), Community Earth System Model 2 Whole Atmosphere Community Climate Model (CESM2-WACCM), Community Earth System Model 2 Whole Atmosphere Community Climate Model FV2 (CESM2-WACCM-FV2), Centre National de Recherches Météorologiques ESM 2-1 (CNRM-ESM2-1), Centre National de Recherches Météorologiques CM 6-1 (CNRM-CM6-1), EC-Earth3, Meteorological Research Institute Earth System Model 2-0 (MRI-ESM2-0), Norwegian Earth System Model 2 LM (NorESM2-LM) and Norwegian Earth System Model 2 MM (NorESM2-MM). Data are provided for 40 members of the Community Earth System Model Large Ensemble (CESM LE), 35 members of Canadian Earth System Model 5 (CanESM5) and 30 members of Institut Pierre Simon Laplace CM6A LR (IPSL-CM6A-LR). The data is stored in netcdf format, and includes metadata in the netcdf files. The raw CMIP6 and CESM LE model output that these transition metrics are calculated from are publicly available at https://esgf-node.llnl.gov/projects/cmip6/ and https://www.earthsystemgrid.org/ respectively. This dataset was created to evaluate climate model projections of Arctic sea ice using seasonal transition metrics in the context of both observations and internal variability. It is used in the article Smith, Jahn, Wang (2020), Seasonal transition dates can reveal biases in Arctic sea ice simulations, The Cryosphere, in press. The discussion paper with a link to the final paper can be found at https://doi.org/10.5194/tc-2020-81. This work was conducted at the University of Colorado Boulder from 2019-2020. 
    more » « less
  5. The prediction of atmospheric CO2 concentrations is limited by the high interannual variability (IAV) in terrestrial gross primary productivity (GPP). However, there are large uncertainties in the drivers of GPP IAV among Earth system models (ESMs). Here, we evaluate the impact of these uncertainties on the predictability of atmospheric CO2 in six ESMs. We use regression analysis to determine the role of environmental drivers in (i) the patterns of GPP IAV and (ii) the predictability of GPP. There are large uncertainties in the spatial distribution of GPP IAV. Although all ESMs agree on the high IAV in the tropics, several ESMs have unique hotspots of GPP IAV. The main driver of GPP IAV is temperature in the ESMs using the Community Land Model, whereas it is soil moisture in the ESM developed by the Institute Pierre Simon Laplace (IPSL-CM6A-LR) and in the low-resolution configuration of the Max Planck Earth System Model (MPI-ESM-LR), revealing underlying differences in the source of GPP IAV among ESMs. Between 13 % and 24 % of the GPP IAV is predictable 1 year ahead, with four out of six ESMs showing values of between 19 % and 24 %. Up to 32 % of the GPP IAV induced by soil moisture is predictable, whereas only 7 % to 13 % of the GPP IAV induced by radiation is predictable. The results show that, while ESMs are fairly similar in their ability to predict their own carbon flux variability, these predicted contributions to the atmospheric CO2 variability originate from different regions and are caused by different drivers. A higher coherence in atmospheric CO2 predictability could be achieved by reducing uncertainties in the GPP sensitivity to soil moisture and by accurate observational products for GPP IAV. 
    more » « less