- Award ID(s):
- 1743738
- PAR ID:
- 10233651
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 33
- Issue:
- 12
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 5035 to 5060
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)A reliable projection of future South Asian summer monsoon (SASM) benefits a large population in Asia. Using a 100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member ensemble of simulations by the Canadian Earth System Model (CanESM2), we find that internal variability can overshadow the forced SASM rainfall trend, leading to large projection uncertainties for the next 15 to 30 years. We further identify that the Interdecadal Pacific Oscillation (IPO) is, in part, responsible for the uncertainties. Removing the IPO-related rainfall variations reduces the uncertainties in the near-term projection of the SASM rainfall by 13 to 15% and 26 to 30% in the MPI-ESM and CanESM2 ensembles, respectively. Our results demonstrate that the uncertainties in near-term projections of the SASM rainfall can be reduced by improving prediction of near-future IPO and other internal modes of climate variability.more » « less
-
Abstract A recent study has shown a robust relationship between the Pacific Decadal Oscillation (PDO) and inter‐decadal variations in autumn precipitation over North Central China (NCC). However, the physical processes underlying these inter‐decadal precipitation variations are not fully understood. Here we analyse multi‐member ensembles of atmospheric reanalysis and model simulations to examine the atmospheric and precipitation responses to sea surface temperature (SST) forcing. Despite the large inter‐member spread resulting from atmospheric internal variability, the model simulations forced by the observed SSTs show an important role of mid‐latitude atmospheric circulation in influencing the inter‐decadal precipitation variations over NCC. We also analyse the sensitivity experiments using three atmospheric models forced by the Inter‐decadal Pacific Oscillation (IPO)/PDO‐like SST fields. The results suggest that the SST anomalies associated with a negative IPO phase can induce anomalous positive pressure anomalies over the East Asia‐Japan‐North Pacific region, which weakens the East Asian trough (EAT) and produces southerly advection of warm and moist air into NCC, leading to increased precipitation there. This study provides a depiction of how the IPO/PDO‐associated SSTs induce inter‐decadal oscillations in mid‐latitude atmospheric circulations, which in turn cause inter‐decadal precipitation variations over NCC.
-
Abstract Large ensemble simulations with six atmospheric general circulation models involved are utilized to verify the interdecadal Pacific oscillation (IPO) impacts on the trend of Eurasian winter surface air temperatures (SAT) during 1998–2013, a period characterized by the prominent Eurasia cooling (EC). In our simulations, IPO brings a cooling trend over west-central Eurasia in 1998–2013, about a quarter of the observed EC in that area. The cooling is associated with the phase transition of the IPO to a strong negative. However, the standard deviation of the area-averaged SAT trends in the west EC region among ensembles, driven by internal variability intrinsic due to the atmosphere and land, is more than three times the isolated IPO impacts, which can shadow the modulation of the IPO on the west Eurasia winter climate.more » « less
-
null (Ed.)Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.more » « less
-
Abstract Volcanic eruptions can have significant climate impacts and serve as useful natural experiments for better understanding the effects of abrupt, externally forced climate change. Here, we investigate the Indian Ocean Dipole's (IOD) response to the largest tropical volcanic eruptions of the last millennium. Post‐eruption composites show a strong negative IOD developing in the eruption year, and a positive IOD the following year. The IOD and El Niño‐Southern Oscillation (ENSO) show a long‐term damped oscillatory response that can take up to 8 years to return to pre‐eruptive baselines. Moreover, the Interdecadal Pacific Oscillation (IPO) phase at the time of eruption controls the IOD response to intense eruptions, with negative (positive) IPO phasing favoring more negative (positive) IOD values via modulation of the background state of the eastern Indian Ocean thermocline depth. These results have important implications for climate risk in low‐likelihood, high‐impact scenarios, particularly in vulnerable communities unprepared for IOD and ENSO extremes.